人人范文网 范文大全

动力总成悬置系统设计总结

发布时间:2020-03-03 11:57:57 来源:范文大全 收藏本文 下载本文 手机版

第一章悬置系统的经验设计

1.1悬置系统的功能与设计原则

发动机悬置系统是发动机应用工程的重要组成部分。悬置系统的功能与设计原则大致可归纳如下:

1隔离振动

在发动机所有工作转速范围内,发动机产生的振动必须通过悬置系统加以隔离,尽可能降低传递给汽车底盘和车身的振动。同时悬置系统还必须隔离由道路不平引起的车轮悬挂系统的振动,防止这一振动向发动机传递,避免发动机振动加剧以满足车辆运行时的平稳性和舒适性,并保证怠速和停机时发动机的稳定性。

2发动机支承和定位 为了隔离振动,发动机被支承在几个弹簧软垫上。因而在发动机本身振动和外界作用力驱动下,发动机和底盘之间必然存在着相对运动。所以悬置系统必须具有控制发动机相对运动和位移的功能,使发动机始终保持在相对稳定和正确的位置上,决不能让发动机在向各方向运动中与底盘车身上的零件发生干涉和碰撞。

3保护发动机

车辆在行驶过程中同时承受着动态负荷和冲击负荷。悬置系统应具有保护发动机的能力,防止发动机上个别部位因承受过大的冲击载荷而损坏,特别要保证发动机缸体后端面与飞轮壳的结合面上的弯曲力矩不超过制造厂规定的限值。此外车辆在崎岖道路上行驶时,车架的扭曲变形会使发动机承受扭曲应力,使发动机局部受到损伤。悬置系统应布置合理,并正确选择软垫刚度等参数,以保证能充分缓冲和抵御外力的冲击并消除薄弱环节。

4克服和平衡因扭矩输出而产生的反作用力 悬置系统必须有足够强度,当发动机变速箱总成输出最大扭矩时能克服最大扭矩所产生的最大反作用力。悬置软垫和支架在这种条件下都必须具有足够的可靠性。

5发动机与底盘之间的连接零件必须有足够柔性

这些零件是排气管进气管、燃油管、冷却水管、压缩空气管、油门操纵机构及变速箱操纵机构等。如果它们的刚度较大,则发动机的振动容易造成这些零件的损坏,特别是在怠速停机和出现共振时表现得尤其剧烈。另一方面如果它们刚度较大,也会改变发动机悬置系统的刚度和自振频率,从而影响隔振效果并导致噪声升高,因此这些连接件必须采用柔性软管或柔性连接。

6悬置系统的零部件必须具有足够的强度和可靠性 在严重的冲击负荷下应保证不发生损坏特别,起关键作用的悬置软垫必须可靠耐久能适应各种恶劣工作环境(包括耐水耐油及耐高温和低温)。如果系统零部件出现损坏,则损坏应最先出现在软垫总成上,而不应是悬置支架金属件。在软垫的橡胶部分损坏后,发动机应仍能依靠软垫总成中金属骨架的支承而保持其原有位置,而不应引起其它撞击损坏,一般来说发动机悬置系统零部件的寿命应与发动机的大修期相当,在发动机大修前不应出现损坏。

7发动机悬置系统的设计还应满足装配精度低、拆装方便和维修接近性好等条件 8悬置系统零部件还应符合低成本、通用化、标准化和系列化的要求 1.2发动机的振动特性

汽车和工程机械所用发动机大部分为往复式内燃机。由于活塞连杆机构的往复运动以及输出扭矩时形成的脉冲反作用力,这类发动机本身就是一个固有的振动源。虽然经过精心设计和制造振动可以得到一定减轻,但由于结构先天的弱点振动是不可能完全消除的。

振动及振动噪声不但易造成发动机及车辆零部件的损坏,同时会使驾驶员及乘客疲劳所以必须隔振使车内振幅降至可接收的水平。

1.2.1发动机的振动源

发动机的振动主要起源于两处 1点火激励

这是由发动机气缸内点火燃烧,曲轴输出脉冲扭矩引起的激扰。由于扭矩周期性地发生变化导致发动机上反作用扭矩又称倾覆力矩的波动这种波动使发动机产生周期性的扭摆运动,故称扭转振动。其振动频率实际上就是发动机的发火频率,计算公式为:

fF1式中:n为发动机转速,rpm

ni(1-1) 60i为汽缸数

为冲程系数,两冲程为1,四冲程为2 2不平衡惯性力激励

这是由发动机往复运动的活塞和连杆等造成的惯性力不平衡的垂直振动其激振,干扰频率为:

fN2Qn60(1-2)

式中:n为发动机转速,rpm Q为比例系数,一阶惯性力为1,二阶惯性力为2 不平衡惯性力的外激干扰频率与发动机的缸数无关,但惯性力的不平衡量与发动机缸数和结构特征有着密切关系。

对单缸机而言一阶惯性力和二阶惯性力都是孤立存在的,它的平衡性最差相对振幅也最大,除非发动机内装有特设的平衡机构。

对多缸机而言,由于曲轴上曲拐角度的合理分布和配置,使各缸之间产生的惯性力相互抵消和平衡。因此部分多缸机上的惯性力振动已基本得到消除,但制造上造成的误差除外。

表1-1是四冲程往复式内燃机的固有平衡特性表

表1-1四冲程往复式内燃机的固有平衡特性表

从表1-1可以看出汽车常用的几种发动机中只有三缸机和四缸机两种机型没有得到完全平衡,因此对于使用这两种机型的汽车必须特别重视悬置系统的设计,除非发动机本身已经采用了专门设计的平衡机构。

不带平衡机构的直列四冲程四缸机目前在汽车上的应用非常广泛,出现的振动问题也具有普遍性,其基本特点如下:首先在低怠速如600转/分钟时,它的扭转振动频率和不平衡二级惯性力的外激频率均较低,仅20Hz。一般情况下十分接近悬置系统的固有频率,易导致共振。其次在高速阶段如果发动机的额定转速为3000转/分钟,则其二级不平衡的振动的外激频率高达100Hz,而且不平衡惯性力大小与转速的平方成正比,这可能导致发动机一级变速箱总成产生弯曲共振,因此设计四缸机悬置系统时必须重视高低两端的振动特性。

直列六缸机的惯性力和惯性力矩是完全平衡的。理论上它不应存在垂直方向的惯性力振动。如果出现明显垂直振动,这可能是发动机或离合器运动件的平衡制造精度超差、各缸工作不均匀或失火造成的。严格说来直列六缸机的唯一激振源是反作用力矩的扭转振动。

1.2.2动力总成的振动模态

发动机坐标系规定如下:以曲轴中心线与发动机变速器结合面交点为原点,以曲轴中心线指向变速器侧为X轴,以平行于汽缸中心线并向上方向为Z轴,Y轴由右手定则确定。

汽车动力总成通常是通过橡胶悬置支撑在车架上的,由于橡胶悬置通常为弹性元件,因此发动机动力总成与橡胶悬置构成质量-弹簧式的振动系统。一般汽车动力总成悬置系统的固有频率都在30Hz以下,而无论发动机本身还是汽车底盘结构当作弹性体时其最低的一阶固有频率都在60Hz以上,两者相差甚远。因此在工程实际中发动机动力总成和汽车底盘都被视为刚体处理。视为刚体的发动机动力总成在空间的运动就具有六个自由度,即三个沿相互垂直的通过发动机动力总成质心的轴线的往复运动和绕此三根轴线的回转运动。这样发动机动力总成悬置系统就有六个振动模态,相应的也就有六个固有频率。

沿Z方向的运动称为垂向平动,绕X方向的转动称为横摇,绕Y方向的转动成为纵摇,绕Z方向的转动称为平摇。

理论分析表明,汽车发动机动力总成的六个振动模态并不是完全耦合在一起的,而是形成两组三联耦合振动,即纵向—垂向—纵摇耦合和横向—横摇—平摇耦合。

1.3悬置系统的隔振机理 1.3.1自由振动

最简单的振动系统由质量块和弹簧阻尼组成,如图1-1所示

图1-1有阻尼自由振动

在不考虑阻尼的情况下若将重块向下压,使弹簧压缩变形然后松开,质量块就会上下自由振动。振动的自振频率或称固有频率的计算公式为:

fN112KM(1-3)

式中:K为弹簧刚度(N/m)

M为质量块质量(Kg)

实际上阻尼的存在将会导致振动振幅逐渐减小,直至振动完全停止。这种现象称为有阻尼的自由振动振动。衰减率取决于系统阻尼的大小。

发动机悬置系统的阻尼通常很小,可忽略不计。如果简化为最基本的模型,动力总成就相当于质量块,悬置软垫相当于弹簧。这就可以计算出悬置系统的自振频率,可见悬置软垫的刚度对悬置系统自振频率的大小起关键性作用。

1.3.2受迫振动

如果在有阻尼的自由振动中同时向重块施加一个周期性的外力,即存在强制的外激振力。此时重块将既有自由振动又有外激强制振动,两个振动叠加这种振动称为受迫振动。显然发动机悬置系统的振动属于这种受迫振动。

有两类强制外激振动源作用于发动机悬置系统,一类是内振源即上节所述的由发动机本身引起的振动,另一类是外振源由道路不平引起,并通过车轮悬挂系统及车架传递给发动机变速箱总成的振动。这种由道路不平引起的振动频率很低大约在1~3Hz。

这两种强制振动均要求进行隔离,强制振动模型示意图见图1-2

图1-2有阻尼的强迫振动

1.3.3频率响应

根据振动理论分析,当强制振动施加到自由振动的振波上,开始时运动情况比较复杂,经过一定时间后自振波的振幅将变的很小而可忽略,只留下强制振动的成分。但这种受迫振动的振幅与频率比有很大的关系。

频率比就是强制振动的频率与自振动的频率之比。 如果将强制振动的振幅称之为输入振幅,将受迫振动的振幅称之为输出振幅,则输出振幅与

输入振幅之比可称为振动传递率。 显然振动传递率大于1表示振动放大,这是不希望的。振动传递率小于1表示振动减小,这是所追求的。

图1-3是频率比与振动传递率关系曲线,称为幅频响应曲线。它是减振原理中很重要的依据。

图1-3幅频响应曲线

频率比与振动传递率之间的关系式如下:

振动传递率21(2cRf)22(1Rf)(2cRf)2(1-4)

式中:阻尼比为实际阻尼与临界阻尼之比

Rf为频率比

c为阻尼比

临界阻尼2KM(1-5)

1.3.4共振

从图1-3可以看出随着频率比增大,开始时振动传递率迅速上升。到频率比接近1,即外激频率接近自振频率时,输出振幅出现最高峰。振动传递率可达数十倍,即出现共振。共振振幅的大小取决于系统中的阻尼,按理论如果阻尼等于0共振振幅为无穷大,而实际上阻尼总是存在的,在大阻尼情况下共振振幅将得到大幅度控制,故共振振幅因阻尼不同而各异。 1.3.5隔振

对于采用普通橡胶悬置软垫系统而言,阻尼一般很小可不予考虑。即认为阻尼c=0。此时可将振动传递率表达式简化为

振动传递率12(1Rf)2(1-6)

在这中情况下,频率比小于1时振动被放大;频率比等于1时,振动传递率最大,出现共

振;频率比继续增大,振动传递率就逐渐下降,当频率比达到2时振动传递率等于1,表示振幅恢复到原始的强制振动的水平;随着频率比进一步加大,振动传递率将小于1,因而产生隔振的效果。

可以看出频率比越大隔振效果越好,但频率比大于5以后隔振效果的提高就不明显了。表1-2是频率比与隔振效果的关系表

表1-2是频率比与隔振效果的关系表

在悬置系统设计中,如果已知强制外激振动的频率,为了隔振悬置系统的自振频率必须控制在一个界限以内。举例如下:

首先考虑发动机激振,以四缸机为例在怠速时内振源的外激扭转振动频率设为20Hz。则悬置系统的自振频率扭摆方向必须控制在20/1.414Hz以下,通常应设定在10Hz。

同时需考虑道路激振,载重车悬挂系统自振频率为1.5~2.2Hz,轿车悬挂系统自振频率为1~1.5Hz。对于发动机悬置系统而言,这属于发性在底座的低频外激强制振动。为了远离共振区,悬置系统的最低自振频率应大于悬挂系统自振频率的1.5~2.0倍,即频率比应小于0.5~0.6此时的振动传递率小于1.8,否则汽车在不平道路上行驶时发动机会产生过大的摇晃。

要满足这两方面的条件,就必须合理选择悬置软垫并对悬置系统进行精心布置。

1.3.6实际应用中悬置软垫的选择

根据上述机理,悬置系统的自振频率应小于发动机工作转速范围内最小的强制振动频率的1/2,此时的隔振效率为66.7%。

若需进一步提高隔振效率就有一定难度,主要是两个方面的制约: 首先,如前述考虑到道路激振悬置系统的自振频率不能太低。 其次,如果要降低悬置系统的自振频率则必须采用刚度较低的悬置软垫。对于橡胶软垫,就必须使用硬度较低的橡胶,这将产生下列不利影响:

一、软垫刚度降低后发动机的稳定性差,受外力后相对位移大,易导致发动机上零部件与底盘上零部件干涉碰撞。

二、软垫的变形量大,在振动中产生大的阻尼功使橡胶发热,寿命下降。

三、橡胶硬度降低后其粘结强度将显著下降,悬置软垫易撕裂损坏。 1.3.7其它零部件对隔振性能的影响

除必须合理选择悬置软垫外,还必须重视悬置软垫底座的刚度,例如与悬置软垫连接的支架、车架和横梁等其结构必须十分坚固,其刚度必须大于悬置软垫的刚度十倍以上,由它们产生的自振频率必须大于由软垫产生的自振频率的三倍。否则单独考虑悬置软垫的隔振作用将不会达到目的,严重时还可能因底座刚度太差而引起共振。因此在刚度很差的横梁中间必须避免布置一点式悬置,而应左右分于成两点布置。如果必须采用一点式,则横梁的刚度必须加强。这进一步说明在发动机、车架和悬置软垫三者之间还存在匹配关系。

1.3.8振动和噪声的关系

结构产生的振动频率,可以分为两种频率范畴。一是振动其频率区是15~50Hz,另一种是噪声其频率区是50~20000Hz。振动和噪声有密切的关系。发动机变速箱和液压泵等都是产生振动和噪声的根源。柴油发动机尤甚要隔离噪声,首先必须切断从金属传递噪声的路径。橡胶是切断噪声的最好介质,其弹性越好隔噪效果越好。

采用三明治式隔振软垫虽然可以在不损害剪切强度的条件下提高压缩刚度。但它不利于切断噪声的传递,故不宜推广。另一方面这类软垫在工作中由于橡胶挤压变形可能会造成软垫金属骨架之间的接触,这也必须避免。此外,连接和支承附件的管路与支架对噪声的影响也较大,所以管路与支架的连接处应尽可能采用橡胶套或橡胶垫。这不但可以避免管路表面的微动磨损,而且有利于降噪。

1.4设计悬置系统必须确定的结构参数

悬置系统设计中下列结构参数是不可缺少的:

1.动力总成含发动机变速箱所带附件以及悬置安装支架的质量。这一质量包括总成内储满的冷却液和机油,即湿重

2.动力总成的重心位置

3.动力总成的转动惯量和惯性积

4.有关发动机性能参数和结构强度极限  发动机额定转速  发动机低怠速转速  发动机全负荷额定功率  发动机最大扭矩

 发动机缸体后端面与飞轮壳接合面上规定的弯矩限值  发动机气缸数气缸排列方式及曲柄分布  发动机工作冲程数  发动机的发火次序

5.动力总成前后悬置软垫支撑点的位置及角度 1.5发动机悬置支承点的布置

汽车动力总成传动系统形式的多样性对动力总成隔振悬置系统提出了不同的设计要求,导致了动力总成悬置系统的布置方式的多样性。

(1)发动机机缸数的影响。

不同缸数的发动机对动力总成的振动激励型式和激励频率不同。对于四缸四冲程发动机,在低频区的激振成分主要是第二阶不平衡往复惯性力;对于六缸四冲程发动机,其激振成分主要是第

三、六阶扭矩谐量。根据隔振理论,动力总成刚体振动模态频率应比主要激振频率的0.71倍要小。考虑怠速隔振的情况,当发动机的怠速转速相同时,四缸发动机动力总成的刚体振动固有频率上限需低于六缸机。

(2)发动机布置方式的影响。

FF式汽车的发动机可以横置或纵置,而横置发动机和纵置发动机的倾覆力矩对车身的低阶弯曲、扭转振动模态的相互耦合、匹配关系也完全不同。虽然动力总成的转动惯量IY一般比IX要大得多(3—4倍左右),但动力总成的俯仰振动模态频率一般低于侧倾振动模态频率,动力总成的俯仰振动幅值往往小于侧倾振动幅值。在发动机怠速工况下,动力总成的侧倾振动较大,为了避免动力总成的振动引起车身的低阶弯曲、扭转模态共振,在动力总成悬置系统设计过程中需要合理匹配车身弯曲或扭转振动模态与动力总成刚体侧倾振动模态的频率,同时对动力总成悬置安装点与车身固有振型节线的相对位置关系进行合理匹配。例如,对于横置式发动机,动力总成的前后悬置不宜跨置于车身弯曲振型节线的两侧。

(3)动力传动系统型式的影响,

对于发动机前置—前轮驱动的FF式汽车动力传动系,其动力总成还包括驱动桥主减速器,使得作用在动力总成上的驱动反力矩比FR式汽车大大增加,就要求提高悬置的静刚度。同时,FF式汽车动力总成与FR式相比,其扭矩轴与曲轴的夹角明显增大,当其悬置系统采用V型布置方案时,往往由于布置空间和布置位置的限制,难以使得悬置组在布置达到使悬置组的弹性中心落在扭矩轴上的目标。因此,有必要在整车总布置初期预留必要的空间。

(4)整车振动控制性能要求对动力总成悬置系统设计的影响。 为了抑制路面激起的整车振动,可适当配置动力总成悬置系统的垂向振动模态频率,使其起到控制整车振动的动力吸振器的作用,由动力总成吸收经过悬架传递上来的振动,从而减小车身的振动。这往往要求动力总成悬置系统有较高的垂向刚度。

1.5.1悬置支承点的数目

悬置点的数目可以有

3、

4、5及6点等四种类型。悬置点的数目一般根据发动机变速箱总成的尺寸(特别是长度尺寸)、重量、用途和安装方式等决定的。3点及4点悬置在汽车上的应用最为普遍,悬置点的数目增多将难以保证各点的受力均衡,当车架变形时发动机和车架失去顺从性,使个别支点因发生错位而受力过大,反而影响可靠性。3点式悬置与车架的顺从性最好,因三点决定一个平面,不受车架变形的影响。而且自振频率低,抗扭转振动的效果好,值得推荐的是前悬置采用两点左右斜置,后端一点紧靠主惯性轴的布置方案。这种布置具有较好的隔振功能,在4缸机上得到广泛的应用。而前一点后两点的三点式多用于6缸机。4点式悬置的稳定性好,能克服较大的扭矩、反作用力。但扭转刚度较大,不利于隔离低频振动。但经过合理设计仍可满足4缸机更能满足6缸机的要求。4点式悬置在6缸机上的使用最为普遍。5点式悬置一般仅用于重型汽车上,因为其发动机变速箱总成的重量和长度太大,为了避免发动机缸体后端面与飞轮壳结合面上产生过大的弯矩,不得不在变速箱上增加一个辅助支点,从而形成5点式悬置。但必须经过负荷计算确定辅助支点的刚度,辅助支点的刚度不能太大必须有足够的柔性,以避免因车架变形而损坏变速箱。

1.5.2悬置支承点的位置

悬置点有前悬置和后悬置之分。3点式悬置系统有前2后1和前1后2两种布置方案。悬置点的位置应视具体结构空间和隔振要求而定。

实际上一般在发动机或变速箱上均已提供了预留的螺孔或凸台,以供安装悬置支架。甚至有多组螺孔或凸台以便选用。这些螺孔中前悬置用的大多数分布在缸体前端面下部或缸体前中部的左右侧面上,后悬置用的分布在飞轮壳两端变速箱底部或两侧。

当然在周围空间允许的情况下,设计悬置支架时仍可对结构布置和纵向尺寸作适当调整。比如康明斯公司就为悬置系统提供了多种选装方案。

在确定悬置点的位置时,必须进行悬置点的载荷计算,然后校核各支点位置是否满足发动机制造厂对支点位置的要求及对关键部位的载荷的要求。在根据撞击中心理论调整前后悬置的相对位置,并适当调整悬置点的横向位置及高度方向位置。

1各悬置点的载荷及缸体后端面的弯矩计算

已知动力总成的重量WG和重心位置后,可根据下图中标志的尺寸计算前后悬置点的负荷R1及R2或变速箱上的辅助支点处的负荷R3。同时计算出发动机缸体后端与飞轮壳结合面处的静态弯矩Mxx。

图1-4发动机悬置系统计算受力的尺寸参数图 在无辅助支点的情况下计算公式如下:

R2后悬置点负荷

前悬置点负荷

W(GL1ab)L3(1-7)

R1WGR2(1-8)

MxxR2L6WtL7(1-9) 缸体与飞轮壳结合面处的弯矩

式中:

Wt为变速器重量

通常发动机制造厂对Mxx都规定有一个最大限值。若Mxx超过该限值应考虑使用辅助支点,即设计R3。设计时可先假定一个R3,值然后再校核Mxx公式如下:

MxxR3L8R2L6WtL7(1-10)

然后在校核Mxx是否满足要求,并最终确定R3的值。

R

1、R

2、R3的值在选择悬置软垫时将是不可缺少的参数。

2发动机制造厂对悬置点位置的要求

许多发动机制造厂对悬置支架的尺寸(换言之即悬置点的位置)作出了限制,以保护发动机避免支架、缸体以及飞轮壳等结合面上因产生过大的弯曲力矩和挠曲应力而导致螺孔及装配面发生局部破坏。

如康明斯对B及C系列柴油机悬置支架在悬臂尺寸和高度尺寸上的限制如下:  前悬置支架的支承点离缸体前端面不得大于100毫米  前悬置之间的支承面离端面螺孔的高度不得大于200毫米

 前悬置支架设在缸体两侧面时支承点离缸体侧面的距离不得大于127毫米

 后悬置支架的支承点离飞轮壳侧面的举例不得大于76毫米离曲轴中心线不得355毫米

 后悬置支架的支承点在纵向上离开飞轮壳装配面不得大于50毫米

车辆行驶中承受着动态负荷和冲击负荷,动力总成在最恶劣的情况下,将以4~6倍的重力加速度作用在支架上。虽然支架本身具有足够的强度和刚度,但过大的弯曲力矩作用在缸体及飞轮壳的螺栓紧固面上及结构的局部处,足以造成破坏.因而康明斯提出了上述限值,其中已经考虑了动态条件,各限值是在考虑加速度为6g的基础上设定的。同时康明斯对B及C系列柴油机缸体与飞轮壳结合面处的静态弯矩M作出了Mxx不得大于1350Nm的要求。在设计悬置系统时必须满足这一要求。

3前后悬置点纵向距离的选择和优化

能利用缸体和飞轮壳上预留螺孔的前提下,悬置点的纵向位置应尽可能满足下列条件: a撞击中心理论

对于外激频率较低的发动机来说,可采用撞击中心理论确定前后悬置点的纵向位置。即如图1-5所示,使前后悬置点在互为撞击中心的位置O1O2上

图1-5撞击中心理论示意图

这样当一个支点受一个垂向力作用时,另一个支点上的响应力为零。换言之,如果一个软垫上遇到一个很大的垂向冲击力,由于另一个软垫处于其撞击中心,故在这个软垫上不会引起反应,反之亦然。这样前后悬置上的垂向冲击力不会相互影响,从而可取得良好的隔振效果。

按照撞击中心理论应满足:

LFLRJym(1-11)

式中:LF为前悬置点离动力总成重心的纵向距离

LR为后悬置点离动力总成重心的纵向距离

Jy动力总成绕Y轴的转动惯量

m发动机变速箱动力总成的质量

b将悬置点布置在机体一弯模态的节点上 对于较大型的高速发动机而言,悬置点应布置在机体弯曲振动的节点上。因为机体实际上不是绝对刚体,在高频力作用下它将出现类似直梁的弯曲振动。

如果将悬置点布置在机体弯曲振动的节点上,既可避免机体的弯曲振动力传给车架,也可防止道路不平引起的振动。通过车架而激起机体的弯曲振动。因为在节点上不可能激起梁的振动。

通常只需考虑机体的一阶弯曲模态,自振频率大约在80Hz左右。对于经常行驶在条件较差的道路上的车辆来说,这种结构布置更具有实用意义。当然这种布置还取决于整车布置的空间条件,有可能难以实现。这种布置方式如图1-6所示。

图1-6发动机弯曲振动的节点示意图

4悬置点的横向距离 一般情况下,悬置点的横向距离由缸体或飞轮壳的宽度及悬置支架的悬臂尺寸决定,变化的余地不大。一般来说悬置点的横向距离越大则稳定性越好,但使悬置系统扭转刚度增大,对隔离扭转振动不利。

5悬置支点的高度

悬置支点的高度对隔振性能有较大影响。

对平置式软垫而言,软垫离主惯性轴越近越好,既可降低动力总成的重心提高稳定性,也利于隔振。故一般应尽可能提高悬置支点的高度,但往往因受到布置空间的严格限制而无法实现。

图1-7是一个后悬置支点高度提高的实例。由于车架位置太低,不得不用支撑柱抬高后悬置软垫,这也是一种成功的方案。因为它可吸收很大的冲击力而不损坏发动机。这种用套管将发动机支架抬高,解决装置上高度差的问题,还可增加水平方向柔度,能吸收冲击保护发动机。

图1-7用套管将发动机支架抬高的形式示意图

对斜置软垫而言,悬置点的高度是按照其弹性中心落在主惯性轴上的原理确定的。

1.5.3悬置软垫的布置形式

1平置式

平置式软垫呈水平布置,结构简单、装配方便、尺寸要求精度低。平置式软垫一般有两种:

一种是桶形或称蘑菇形,中心镶有套管(也有不镶的),由上下两段直径不同的橡胶体组成。装配时小端插入底座(横梁或支架)孔中,螺栓向下穿入套管内,拧紧下部螺母至套管两端顶死,并靠下部的平垫圈将下端橡胶体压扁形成一个返回跳的缓冲软垫。也可采用上下两个软垫,分别安装在底座的上下面上,三者串联装配在一起,作用相同。桶形中还有一种是由内外两个桶形壳体组成,中间用橡胶硫化,外壳紧固在发动机支架上,它也可用于平置式。这类软垫在载重车上实用的比较普遍,有较好的定位和隔离冲击振动的功能,但不承担剪切方向的变形,不利于隔离低频扭转振动。

另一种是方块形,橡胶体上下表面分别与上下金属骨架板硫化粘结成一体,依靠金属骨架与发动机上的支架和车架紧固连接,因此形成上下绝缘式支撑。它可承担压缩和剪切两个方向上的变形。悬置系统的扭转刚度小,隔离扭转振动的功能较强。但水平方向的自由度较大,横向稳定性差。故软垫的金属骨架上应设有限位面。

2斜置式

斜置式软垫成对呈V行左右倾斜布置。这种情况下悬置软垫部分受压缩部分受剪切,可以利用橡胶的剪切高弹性提高隔离扭转振动的能力。同时,软垫布置在发动机前/中部两侧,可以降低发动机重心提高发动机稳定性。

此外斜置情况下,还可调整前后悬置平面的弹性中心,在设计时使前后悬置平面的弹性中心落在发动机变速箱总成的主惯性轴上,利于振动解耦,可进一步提高隔振性能。但斜置式布置的制造精度和装配精度要求相对较高。

另一种斜置式适用于后悬置,软垫布置在飞轮壳上部两侧,图1-8所示。其特点是软垫的压缩刚度较大,为了补偿隔振性能,将软垫斜置,使两软垫剪切平面的交点落在主惯性轴上。

图1-8斜置式悬置软垫装置图 3轴套式

这种结构能提供360°的压缩支承,能消除车架变形对发动机的影响,能克服轴向外力及惯性力,能吸收水平方向的力偶。制造简单,成本低,空间紧凑,拆装方便。修理时一般只需要更换橡胶圈。安装过程中安装支架是从发动机或变速箱上伸出的悬臂短轴或横轴,隔振用的橡胶圈套在轴上,然后将带有橡胶圈的悬臂轴落入并紧固在车架上的轴座内。这种结构一般用于后悬置,当然也有用于前悬置的。

4吊挂式

这种结构的特点是悬置软垫的支座紧固在发动机变速箱总成上方的横梁上,通过吊架或支架将发动机变速箱总成的后端吊挂起来,使重量支承在软垫上。故适用于采用一点式布置的后悬置。

这种布置一方面是为了适应车架和横梁结构,同时也有利于提高后悬置的稳定性。因为动力总成重心处在悬置软垫下部,不可能出现发动机侧向倾倒现象。但与软垫布置在下部相比,悬置点离主惯性轴的距离加大了,会引起较大的扭转振幅。所以应适当调整软垫的刚度和承压面来改善隔振性能。

5会聚式

这种布置方式的特点是所有悬置的主要刚度轴会聚相交于同一点。除了有良好的稳定性外,会聚式的最大的优点是可以通过调节悬置倾斜角度和安装位置来获得六个完全独立的悬置系统的振动模态。但是会聚式悬置布置方式实施起来比较困难,而且一般汽车发动机并没有纵向激励,斜置式完全能够满足发动机动力总成的隔振要求,因此会聚式悬置方式应用并不广泛。

1.5.4前后悬置的功能对比

前后悬置共同承担着整个悬置系统的全部功能,但由于所处的位置不同,对它们的要求各有特点:

(1)对常规的载重汽车前悬置而言,软垫大多数布置在发动机缸体前端面或缸体前部的两侧。因此前悬置软垫到发动机变速箱总成重心的纵向距离比后悬置要远,尤其对于I-6发动机它承受的负荷比后悬置要轻。因而前悬置软垫的压缩刚度必然比后悬置的要小,同时为了有效隔离扭转振动,前悬置的侧向刚度和垂向刚度都较小。

(2)由于发动机变速箱总成的主惯性轴是倾斜的,前高后低,因此前悬置软垫离主惯性轴的距离也比后悬置的要远,因而前悬置软垫承受的扭转振幅要比后悬置大。为了保持一定的扭转自振频率和扭转刚度,软垫离开主惯性轴越远其刚度应越小。这一点可从悬置系统的扭转刚度公式中可以看出,刚度小意味着振动时变形大、吸振能力强。可见前悬置承担着大部分隔振和吸振功能,而后悬置则占次要地位。

(3)对后悬置来说,它离动力总成重心较近,支撑着动力总成的大部分重量。所以垂向刚度较大。它离主惯性轴较近处于扭转激振较小的部位,不承受大的扭转振动振幅,因此主要倾向于隔离垂向振动。同时它处在发动机动力输出端,受传动系统不平衡力的严重干扰和外部轴向推力的冲击,因此后悬置必须承担大部分的定位功能。此外当发动机输出最大扭矩时,支撑点出现的最大反作用力也应由后悬置来支撑,因为后悬置软垫的压缩刚度大,有能力抵抗最大反作用力。而前悬置软垫刚度小只能承担一小部分。

(4)从前后悬置在车辆上的位置来说,无论发动机前置或后置,后悬置总是靠近车辆的中部,而不像前悬置那样总是处于车辆的前端或后端,因此车架的变形和振动对后悬置的影响比前悬置要小。在车辆形式中后悬置位置相对稳定,因此允许在后悬置点采用压缩刚度较大的软垫,以利于克服最大扭矩反作用力和惯性力。 总之,四缸机和六缸机、柴油机和汽油机、轿车和载重车、轻型车和重型车等等对悬置系统都有不同的要求。作为设计者应结合使用特点,注意观察和广泛收集现有各种悬置的结构方案,吸取成功和成熟的经验,应善于分析对比和借鉴。这是工作中不可缺少的重要环节。

1.6悬置软垫的选择 1.6.1概述

悬置软垫的性能主要包括两个方面:一是弹性指标用刚度K,表示刚度(负荷/变形)。在进行悬置系统隔振性能计算时,软垫刚度是不可缺少的参数。二是强度指标,为了保证软垫的可靠性和耐久性,软垫的工作负荷和变形必须控制在允许的强度范围内。这两方面的指标与悬置软垫的结构、尺寸、形状、受力形式及橡胶品种等都有密切关系。

刚度和强度参数虽可简单估算,但准确的数据必须通过试验测定。国外软垫制造厂通常都能提供各自产品的试验数据和相关资料以供用户选择,或为用户开发新的悬置软垫。国内软垫制造厂家的实力通常要弱一些。因此要设计出好的悬置系统除了要有设计能力外,往往还需要与厂家进行密切合作。

1.6.2软垫静变形量与自振频率的关系

为了确定隔振性能,必须求出悬置系统的自振频率。现对自振频率的计算公式作进一步推导:

fN12KM(1-12)

式中:K为弹簧刚度(N/m)

M为质量块质量(Kg)

应用到悬置系统中有关参数的意义如下:

,K是橡胶软垫的动刚度而不是静刚度。分别以K和K表示动刚度和静刚度,以表示动静刚度之比即

K(1-13) K,一般来说,不同种类橡胶的取值范围如下表所示:

表1-3不同种类橡胶动静刚度比的取值范围

设M是负荷W的质量

fN12K,Wg12gWK,(1-14)

式中:设

WK,(1-15)

显然就是软垫的静态变形量,若把g可看作常数(仅因橡胶而异)。这样可以得到如下公式:

fNC式中:为软垫的静态变形量,单位为米

1(1-16)

C为常数显然C12g,与C的平方成正比

的取值不同,C的取值也不同。橡胶悬置软垫一般选择天然橡胶,此时的取值为1.05~1.25之间。在此范围内两者的关系如表1-4所示

表1-4常数C与动静刚度比的取值关系

基于以上叙述可知:悬置软垫所使用的橡胶品种确定后,系统的自振频率与软垫的静态变形量之间就直接发生关系。两者的关系可以用下列曲线表示: 自振频率悬置软垫在工作时所承受的力来自四个方面: 1静态负荷

即单个软垫上所承受的额定负荷,它是选择悬置软垫的基本参数和依据。 2动态负荷

指由于道路颠簸引起的动态负荷和瞬时冲击负荷。

根据不同的使用条件,在垂直方向上有时可产生4G至6G的重力加速度,向下时由于动力总成自重需再叠加1G。换言之,车辆跳动时软垫可能要承受4至6倍于静态负荷的冲击力。表1-5是不同使用工况下可能出现的冲击加速度值. 静变形量

图1-9悬置系统的自振频率与软垫的静态变形量的关系曲线图

1.7悬置软垫的可靠性 1.7.1悬置软垫的受力情况

表1-5不同应用情况下的冲击加速度 为了克服动态和冲击负荷,可以在悬置底座下部采用缓冲软垫和大的回跳压紧垫圈。这样不但可减轻冲击,也可保护底座避免在严重冲击下造成损坏。这种平置式上下组合的软垫布置形式在重型车上比较常见。

3动力输出时产生的反作用力矩

这个反作用力矩指动力总成输出最大扭矩时产生的最大反作用力矩。 这一力矩主要由后悬置来承担,力矩方向与发动机旋转方向相反。因此在后悬置一侧的软垫上将产生很大的额外压缩负荷。这一压缩负荷可按下列公式计算:

作用力发动机最大扭矩变速器最大减速比悬置两点间的距离(1-17)

在这种工作条件下,软垫上额外增加的压力比静负荷高出3倍以上。不过这种工况出现的次数少、时间短,所以也可以使用发动机全负荷额定转速下的扭矩来代替最大扭矩进行计算,以免选用刚度过大的悬置软垫。

4侧向和纵向惯性力以及外界作用力

悬置软垫除了承受垂直方向上的作用力外,还必须克服侧向和纵向惯性力以及外界作用力。例如车辆急转弯时的侧向离心力、车辆行驶中急刹车时的向前冲击力(可产生1G的负加速度)、车辆行驶时操纵离合器的轴向推力、后桥跳动时传动轴花键滑套的轴向推力等都会使发动机产生侧向或纵向的位移,尤其是前后方向的轴向推力其影响更大。

因此进行悬架系统设计时必须使软垫能承受各个方向外力。必要时应采取限位措施防止软垫因这些外力的作用下产生过大的变形和位移,避免悬置软垫的早期损坏。

常见的限位方法是在软垫的金属骨架上设计翻边,在变形过大时金属骨架之间产生接触,限制橡胶的进一步变形。软垫中镶嵌的套管也有一定的限位作用,而轴套式悬置软垫的限位功能是显而易见的。

1.7.2悬置软垫本身的耐久性

悬置软垫本身的耐久性取决于: 1软垫橡胶的许用应力;

2橡胶与金属骨架之间的粘结强度;

3软垫的形状尺寸因素和结构特征等,橡胶内的应力分布应尽量均匀,橡胶的工作回弹部分体积与橡胶整体体积之比越大越好,金属骨架与橡胶结合表面必须去尽毛刺和尖角,有关尺寸应圆滑过渡。避免应力集中,防止早期局部损坏。

橡胶的强度极限与橡胶的变形比有很大的关系,为了确保安全变形比应控制在下列范围内:

优质橡胶具有良好的减振和缓冲特性,它的冲击刚度大于动态刚度约为后者的1.5~2倍,而动态刚度又大于静态刚度,约为后者的1.32~2.2倍。所以优质橡胶软垫可有力地控制冲击变形和动态变形幅度。 此外如前所述,虽然在选择悬置软垫时是以静态负荷作依据的,但软垫制造厂将根据静态负荷确保悬置软垫能承受相应的动态负荷。

1.7.3悬置软垫的疲劳寿命

悬置软垫的图纸一般会提供软垫的疲劳寿命指标(比如在规定的负荷和变形范围内进行1~3Hz低频激振疲劳试验必须保证软垫在多长和时间范围内不能出现破坏),如果实际使用时的负荷和变形控制在规定的范围内,软垫的可靠性就可以得到保证。

1.7.4影响软垫可靠性的其它因素

1橡胶品种

悬置软垫所使用的橡胶目前主要有两种:一种是天然橡胶,另一种是氯丁橡胶。天然橡胶在-20+70温度范围内具有良好的物理机械性能,而且其疲劳寿命比任何合成橡胶都要长。但它不具备抗机油和抗高温的能力,为了避免天然橡胶制成的悬置软垫被油污染和受高温侵害,应在软垫上采用保护罩。

氯丁橡胶在恶劣环境下工作的适应性比天然橡胶好,因此在重型汽车上使用比较普遍。 2橡胶硬度

悬置软垫用橡胶硬度一般在邵氏30至75度之间。在满足刚度要求的前提下最好选择中等硬度值如55度左右,因为橡胶硬度与软垫刚度有一定的关系,可通过改变橡胶硬度来调整软垫刚度。经验表明橡胶硬度提高或降低邵氏20度,软垫的刚度可加倍或减半。故此选择中等硬度的橡胶可为将来调整软垫刚度提供充分的余地。另一方面,橡胶硬度过低(小于邵氏35度),则粘结强度将大大降低,硫化困难且使用中容易发热。这几方面都将直接影响悬置软垫的疲劳寿命和可靠性。

3橡胶体积

橡胶体积和承压面积大而硬度低的软垫,与橡胶体积和承压面积小而硬度高的软垫相比,其刚度可以保持相等(因刚度与弹性模数及尺寸均成正比)。但体积大而软的软垫在实际使用中更为有利,因为硬度较高的橡胶中含有较多的非弹性添加剂,对其隔振性不利。

4软垫装配面

橡胶软垫与支架或底座的装配面上也必须去尽尖角、毛刺,软垫装配孔/座的边缘应采用大的圆角,使用平垫圈压紧橡胶体时平垫圈的直径应足够大,保证橡胶受压外挤时仍在平垫圈平面之内。这些要求都是为了避免橡胶上出现应力集中和防止早期损坏。

1.8悬置系统的自振频率 1.8.1悬置软垫的刚度计算

悬置软垫是悬置系统中的弹性元件。 普通橡胶软垫以橡胶为主体,与金属骨架经硫化粘结而成。它不仅在压缩和拉伸方向上具有弹性变形特性,在一定范围内具有线弹性,而且在剪切和扭转方向上有具有弹性变形特性。但由于橡胶软垫扭簧作用小,一般在使用中不考虑其扭转弹性。 三种典型的橡胶软垫刚度计算方法摘录如下(见橡胶手册第6卷),从中可以了解影响刚度的材料因素和尺寸因素,以供选择软垫时参考。

设E橡胶的压缩弹性模数(单位Pa),G为橡胶的剪切弹性模数(单位Pa)。 1圆柱形橡胶软垫三维方向的刚度,示意图见图1-10

图1-10圆柱形橡胶软垫

压缩刚度

KZALmZEh(1-18) ALmXGh(1-19)

剪切刚度

KX剪切刚度其中:ALKYALmYGh(1-20)

110.38(h)2D 4D2,mZ1.20(11.65n2),mXmYAF,AFDh 而且:nAL

2方块形橡胶软垫三维方向的刚度,示意图见图1-11

图1-11长方体形橡胶软垫

压缩刚度

KZALmZEh(1-21) ALmXGh(1-22)

剪切刚度

KX剪切刚度

KYALmYGh(1-23)

110.31(h)2A 其中:ALAB,mZ1(1~1.5)n2,mXmY而且:nALAF,AF2(AB)h

3圆筒形橡胶软垫三维方向的刚度,示意图见图1-12

图1-12圆筒形橡胶软垫

KXKZ压缩刚度

hrln2r1(EG)(1-24)

KY剪切刚度

2hGr2lnr1(1-25)

其中:r1为内径,r2为外径,取3~5,取0.8~1 而且:nALAF,AF2(AB)h

1.8.2悬置系统的组合刚度

悬置系统的组合刚度取决于悬置软垫数目、各悬置软垫的刚度及悬置系统的几何布置尺寸。明确了上述参数就可以计算出悬置系统的组合刚度,从而可计算出悬置系统的自振频率。这是悬置系统设计中不可少的步骤。

通常设软垫的压缩刚度为KP,剪切刚度为KS,而以K0表示压缩刚度与剪切刚度之比:

K0KPKS(1-26)

K0范围约为3~8,因橡胶品种而异。

1对称型平置式悬置系统的组合刚度,示意图见图1-13

图2-13对称平置式悬置系统 垂向刚度侧向刚度

KV2KP(1-27) KL2KS(1-28)

2K2KBP扭转刚度(1-29)

如果是单点平置,则: 垂向刚度KVKP 侧向刚度KLKS

扭转刚度K2KPB20

2非对称型平置式悬置系统的组合刚度,示意图见图1-14 设KPL和KPR分别为左右软垫压缩刚度,KSL和KSR分别为左右软垫的剪切刚度

垂向刚度侧向刚度

KVKPLKPR(1-30) KLKSLKSR(1-31)

22KKBKDPLPR扭转刚度(1-32)

其中:B+D为两软垫支点间的距离,且:

BKPR DKPL

图1-14非对称平置式悬置系统

3对称型斜置式悬置系统的组合刚度,示意图见图1-15

图1-15对称型斜置式悬置系统

22K2(KsinKcos)(1-33) VPS垂向刚度

22K2(KcosKsin)(1-34) LPS侧向刚度

2B2KPKSK22KcosKsin(1-35) PS扭转刚度4非对称型斜置式悬置系统的组合刚度,示意图见图1-16

BKPRDKPL,为左软垫的安装倾斜角,为其中:B+D为两软垫支点间的距离,且:右软垫的安装倾斜角。

图1-16非对称型斜置式悬置系统

垂向刚度KVKPLsin2KSLcos2KPRsin2KSRcos2(1-36) 侧向刚度KLKPLcos2KSLsin2KPRcos2KSRsin2(1-37) 扭转刚度KB(BD)KPLKSLD(BD)KPRKSR(1-38) 2222KPLcosKSLsinKPRcosKSRsin1.8.3悬置系统自振频率的计算

实际上悬置系统是一个六自由度振动系统,基于简化计算的目的,在不考虑各自由度之间相互影响的情况下,可按下列公式计算各个方向上的自振频率:

垂向振动

fV1212KVM(1-39) KLM(1-40)

侧向振动

fLf扭转振动

12KJX(1-41)

式中:JX系统绕主惯性轴X的转动惯量 第二章悬置系统的优化设计理论

目前有关的悬置系统的优化主要有:移频、解耦、降低支承处响应力。

2.1移频

移频就是指将发动机各阶固有频率的调整到比较合理的范围之内。固有频率的配置是以系统固有频率的合理分布为目标,以悬置参数为设计变量的优化方法。它不需要涉及任何响应计算。只要求系统固有频率安排合理,而且要求系统的各振动模态尽量不耦合,使系统容易避开共振区。

目标函数一般定义为:

Jmin{i(fifiopt)}i16(2-1)

式中:J为目标函数

fi为系统的i阶固有频率

fiopt为系统的i阶固有频率的设定最优值

i为设计变量的加权因子

一般悬置系统的六个固有频率进行如下约束: 1发动机的滚动模态频率fX

四缸发动机在低频工况下以二阶扭矩激励为主(激励频率为f1)为里使振动传递率小于1,应使fxf12,一般为

fxf12.5~4.5,fX应尽量低于怠速下的激励频率,但应高于整车侧倾固有频率,不能和整车其他子系统如驾驶室的侧倾固有频率过于接近。

2发动机的垂向模态频率fZ

无论低速还是高速工况,发动机垂直固有频率fZ与发动机二阶垂向惯性力的激振频率f2之间应满足f2fZ2,一般为

f2fZ2.5~4.5,fZ还应高于前轮垂向振动的固有频率,避开整车一阶弯曲固有频率,远离驾驶室的垂向振动的固有频率。

3发动机俯仰模态频率fY

发动机俯仰固有频率fY与发动机二阶垂向力矩的激励频率f3之间也应满足f3fY2,一般为f3fY2.5~4.5。

4发动机横向振动模态频率fY

fY与横向激励力频率f4之间也应满足5发动机绕Z轴的振动模态频率fZ

f4fY2,一般为

f4fY2.5~4.5。

发动机工作时由于离心力的作用会产生绕Z轴方向的激励力矩,同时fY横向激励的存在也会产生绕Z轴方向的激励力。所以fZ与绕Z轴方向的激励力(力矩)的频率f5之间应满足f5fZ2,一般为

f5fZ2.5~4.5。

6发动机纵向振动模态频率fX

一般发动机沿曲轴方向的激励很小,但是考虑到悬置元件在制造过程中的KX和KY差别不是很大,并且有限制加速和制动时前后窜动量的作用,所以fX应设计在6~20Hz范围内。

以上举例说明的几个动力总成悬置系统固有频率的布置不一定完全正确,但大家可以从中归纳其分析方法。实际上从整车层面上看,移频就是整车各模态频率和振型的合理分布,其研究的范围实际已达到整车层次。其指导思想简单明了,不管研究的深度和广度要求如何,总能取得相应的效果。在研究不是特别精细的条件下,所需输入不多,工作周期也不长,不失为一种适合工程应用的好方法。

2.2解耦

如果一个作用力或力矩沿一个自由度方向施加到发动机动力总成上,例如沿Z方向施加一个力,当发动机动力总成的重心不仅沿Z向产生平移运动,同时还会引起动力总成的重心绕Y轴的转动,即两个自由度上的振动互相牵连,这就是两个自由度中间存在着耦合振动。基本含义也可以说:若某一振动模态下或在某一广义坐标方向上的振动输入导致另一振动模态下或另一广义坐标方向上的响应则称这两个振动模态是耦合的,如果使耦合分离即称解耦。

因为两个耦合振动的模态可能产生互相激励,导致振动放大,并使这些自由度上的自振频率的频带变宽,从而使隔振性能下降。当发动机悬置系统的结构设计参数不匹配时(有时因条件限制),发动机悬置系统六个自由度中某些自由度之间就会存在振动耦合。这种现象比较普遍,只是程度不同而已。因此在悬置系统设计中解耦是一个比较重要的课题。解耦的目标为:

使各个自由度上单个振动模态的振动相对独立或分离。这样可对隔振效果不佳的自由度单独采取措施,而不影响其他自由度方向上的有关性能。同时当各自由度独立后,可能产生共振的频率比它们之间的耦合时要小。

特别应在激振能量大的几个振动方向上实现解耦。例如旋转运动和横向运动两个自由度之间的解耦。

减少耦合度数,实际情况下多数为两度耦合或三度耦合,尽可能将三度耦合转化成两度耦合。

对六个自由度上的各有自振频率均应进行计算,使所有自振频率分别都小于对应方向的外激干扰频率的12,以保证各自由度上的振动都得到有效控制,并有较好的隔振效果。

通常动力总成悬置系统的六个自由度方向的振动是耦合的。这可能会导致动力总成的振幅增大,振动频率范围过宽。要想实现理想的隔振效果则需要使用更软的悬置软垫。这将导致动力总成与周围零件之间有较大的相对位移,造成与周围零部件相碰撞,发生干涉,破坏整车的平顺性。同时,由于软垫的大位移又使软垫内的应变增大而影响其使用寿命。另外,各自由度振动如果互为耦合,则很难对产生共振的自由度上的频率进行个别改进而不影响其他自由度上的隔振性能。所以在设计悬置系统时应尽量采用解耦布置。

由数个悬置组成的系统也存在弹性主轴和弹性中心。从理论上讲,当前后悬置的弹性中心与动力总成质心完全重合时,则可使悬置系统在六个方向的振动完全解耦。但是由于受到整车布置空间等各种条件的限制,完全解耦很难实现。事实上各自由度的解耦意义并非完全等同,例如来自发动机的激励力主要是垂直方向和绕曲轴旋转方向,所以只要在这两个方向上的振动解耦即可。

2.3降低支承处响应力

支承处响应力最小,这是积极隔振的重要出发点。因为可能导致发动机总成上产生平移或旋转运动的力与力矩都是支承处响应力的函数,令其趋于最小,可获得良好的综合隔振效果。

第三章扭矩轴三点和V型组悬置系统布置

3.1悬置系统相关概念说明

3.1.1动力总成悬置系统的扭矩轴及主惯性矩

为了说明扭矩轴的定义在动力总成上建立两个坐标系,如图3-1所示:

图3-1扭矩轴坐标系

图3-1中OXYZ为发动机曲轴坐标系,O为动力总成的质心,X轴平行与发动机曲轴方向指向发动机前端,Z轴垂直于曲轴向上,Y轴按右手定则确定。OX1Y1Z1为主惯性轴坐标系,X1Y1Z1为主惯性轴,且Y1与Y重合。当一个扰动力(力矩)作用于动力总成主惯性轴上时,则动力总成沿此主惯性轴平动(转动)。通常情况下作用于发动机上的外力为绕曲轴的扭矩,而曲轴和主惯性轴一般是不重合的,因此在此外力矩的作用下动力总成并不沿任何一根主惯性轴转动,而是绕某一特殊轴转动,此轴即为扭矩轴,如图中OX0。OX0Y0Z0为扭矩轴坐标系,且Y0与Y

1、Y重合。由扭矩轴定义可以推出它在动力总成坐标系OXYZ中的方向余弦为:

cos21cos22cos23I1I2I3cosP1cos1cos1cos2cos2cos3cos3I1I2I3cos(3-1)

P1cos1cos1cos2cos2cos3cos3I1I2I3cosP1P1式中:

cos21cos22cos23I1I2I3

Ii(i=1,2,3)为动力总成的主惯性矩

i,i,i(i=1,2,3)为第i个主惯性轴在动力总成坐标系中的方向角 在动力总成在OXYZ坐标系中的转动惯量Ix、Iy、Iz和惯性积Iyz、Ixz、Ixy已得到的条件下,按如下方法可以求出主惯性矩Ii(i=1,2,3)及主惯性矩在动力总成坐标系中的方向余弦。

构造转动惯量Ix、Iy、Iz和惯性积Iyz、Ixz、Ixy的二阶张量:

IX[ST]IXYIXZIXYIYIYZIXZIYZIZ(3-2) 并求解该张量的特征值及对应的特征向量,即为主惯性积Ii(i=1,2,3)和对应的主惯性轴的方向余弦。

美国很早在设计发动机悬置时,首先就是找到动力总成扭矩轴,然后倾斜布置前后悬置软垫使其前后中心的连线尽量平行靠近扭矩轴。

3.1.2悬置的弹性主轴及弹性中心

图3-2 所示的悬置是由橡胶制成的,它有三个正交的轴I、II 、III ,如果作用力沿这些轴单独作用,则悬置所产生的位移与力的方向一致,并且不发生任何转动。这样的轴称为悬置的弹性主轴,三轴线的交点就是悬置的弹性中心。

图3-2 悬置的弹性主轴和弹性中心示意图

作用于被支承物体上的一个任意方向的外力,如果通过弹性支承系统能够的弹性中心则被支承物体只会发生平动,而不发生转动。反之被支承物体在产生平动时还回产生转动,即两个自由度上产生运动耦合。

如果一个外力矩绕弹性主轴作用于被支承物体上,则被支承物体只会发生转动,而不发生平动。反之,如果被支承物体在产生转动时还会产生平动,则称在两个自由度上产生运动耦合。

如果力平行于弹性主轴并通过弹性中心,悬置只产生平移而不产生角位移。弹性主刚度即是指在弹性主轴方向上的刚度值,通常用KI KII KIII 表示。形状简单的悬置很容易根据它们的对称性求得弹性主轴和弹性中心,而对于复杂的就很难求得,甚至不一定存在。要具体情况具体分析。

3.2扭矩轴三点悬置系统布置

Ellwood在1950年撰文总结1949年美国制造的19款不同载客汽车上动力总成悬置布置的特点时指出:动力总成在波动倾覆力矩激励下仅绕扭距轴摆动时,说明动力总成的六个刚体模态中仅被激发出一个模态,当该阶模态的固有频率远低于动力总成怠速时倾覆力矩主谐量的激励频率时,可以得到良好的怠速隔振性能,并可将此作为悬置系统的主要设计要求之一。Ellwood的这种思想是很有指导意义的,1985年Dauld从解耦和优化的角度得出了相同的结论。

为此便有厂家把单个悬置直接布置在扭距轴上,这是扭矩轴三点悬置系统的开始。而扭矩轴三点悬置系统是这种思想最好的体现。

目前,三点式悬置布置方式在轿车、轻型客车等车型上应用非常普遍,其优点是:易于使每个悬置所承受的静载与设计值相符,而不受加工误差、装配工艺等的影响;对于发动机舱空间比较紧凑的轿车等,动力总成悬置安装位置布置较容易,便于整车总布置设计。

图3-3扭矩轴三点悬置系统布置示意图

扭矩轴三点悬置系统布置的指导思想是将左右两个悬置布置在扭矩轴上(或尽量靠近扭矩轴的平行线上),并且由这两个悬置承担动力总成的重量。而防扭拉杆(有时退化为衬套)不承受预载,其用途在于动力总成绕扭矩轴方向的位移控制和隔振。这种布置方式将动力总成绕扭矩轴方向的运动独立出来,避免或减少了由此运动产生的牵连运动。

扭矩轴三点悬置系统悬置数目相对较少,三个悬置之间分工明确,力学模型简单,可以结合各工况灵活设定各悬置系统的各项组合刚度,便于进行动力总成的位移控制及隔振设计,也容易结合试验进行优化。例如:动力总成垂直方向的固有频率只与左右悬置的垂向刚度有关,而绕扭矩轴方向的固有频率只与防扭拉杆的刚度有关,这样我们就可以十分方便的设定这两个对于动力总成悬置系统设计最为关键的因素。

防扭拉杆工作方向主要为纵向方向,在垂直方向几乎不承受任何力,因而防扭拉杆使动力总成左右两个悬置在纵向方向产生力。对于橡胶悬置来说,我们知道悬置的三个主刚度是相互影响的,一个主刚度方向受载,会使其他两个主刚度的值增加。因而纵向力的增加,会使其在垂直方向的刚度剧增,从而影响悬置系统动态特性的稳健性。

针对这种状况,我们应该在不影响绕扭矩轴方向扭转刚度的条件下尽量减小防扭拉杆所受的纵向力,即:使防扭拉杆在纵向方向上尽量远离左右悬置连线。

另外一个解决办法,使动力总成在垂直方向的振动和绕曲轴方向(俯仰)的振动解耦,尽量减小它们之间的牵连运动。

在不可能达到解耦的情况下,为了减小防扭拉杆对左右两个悬置在垂直方向刚度的影响,一个解决方案是将一个悬置和防扭拉杆做成一体,但是这种结构要求发动机仓有较大的安装空间。

3.3V型悬置组系统布置

3.3.1 V型悬置组系统的发展与应用

前文已经指出:动力总成在波动倾覆力矩激励下仅绕扭距轴摆动时,说明动力总成的六个刚体模态中仅被激发出一个模态,当该阶模态的固有频率远低于动力总成怠速时倾覆力矩主谐量的激励频率时,可以得到良好的怠速隔振性能,并可将此作为悬置系统的主要设计要求之一。为此便有厂家把单个悬置直接布置在扭距轴上,但这种布置不太方便,易与发动机端面的皮带轮和风扇发生干涉,而且位置较高,有时必须在车架上安装专门的托架以支承悬置。为了解决这一矛盾,出现了前悬置或后悬置或前后悬置同时采用V型悬置组的布置方式。悬置做V型布置时可使悬置位置较低,便于和车架连接;又能实现弹性解耦,使动力总成在波动倾覆力矩激励下绕扭矩轴方向做固有频率较低的单纯倾覆振动,这就是V型悬置组的起源和最初理论依据。

3.3.2 V型悬置组的特性分析

V形悬置组的功能在于:解除动力总成悬置系统的横向-侧倾弹性耦合,同时具有较大的横向刚度和较小的侧倾刚度,以提高横向稳定性、降低侧倾振动的固有频率;既有利于解除垂向、横侧倾自由度之间的弹性耦合,又容易调整其弹性中心;既有利于使动力总成的最低阶刚体振动模态为以侧倾振动为主的模态,也便于动力总成悬置系统的刚体模态频率与其他子系统固有频率之间的合理匹配,从而获得良好的综合隔振性能

大量实例表明,汽车动力总成在曲轴坐标系下的惯性积一般都较小,远小于其转动惯量,因此惯性耦合较弱。加之不存在振动激励耦合,故利用V形悬置组实现弹性解耦是很有实际意义的。

图3-4V型悬置组示意图

OV 为V形悬置组的弹性中心 OiOj分别为左、右悬置的弹性中心

h为悬置到OV的垂向距离,称为高度 b为距离OiOj的一半,称为宽度

为悬置绕主刚度K与垂向间角度,称为悬置倾角

图3-5单个悬置受力分析

对于V形悬置组中的单个悬置,当该悬置的弹性中心仅沿横向有位移Y 时,其沿弹性主轴、方向的变形、及其所受合力FC的分析如图3-5所示。显然,此时有

090(3-3)

tan0R(3-4) tan0根据这些可推导出公式3-6和3-7

Kcos(3-5)

Ksin、

图2-3 六自由度完全解耦布置方案

采用V型对称布置的支承形式,如果前后悬置的平面和扭矩轴垂直,并且前后悬置的弹性中心均落在扭矩轴线上。则可使动力总成在Y 轴方向的横向振动、Z 轴方向的垂直振动和绕X 轴方向的扭转振动完全解耦。

图2-4 悬置系统解耦布置方案

此时前后悬置的设计参数应满足式2-4:

a1Kb1(q1(1Kq1Kp1Kp1)tan1(3-6)

)tan211a2b2(Kq2(1Kq2Kp2)tan2(3-7)

Kp2)tan221式中:a,b 分别为前后悬置点至质心的Z,Y 坐标 为悬置元件弹性主轴与Z 轴夹角

KpKq分别为悬置的Z 轴、Y 轴两个方向的主刚度

注意:公式3-6和3-7是设计V型悬置组的关键! 如果前后悬置在垂直方向的刚度满足下式:

KZFLR(3-8) KZRLF则可使动力总成在Y轴方向的扭转振动和Z 轴方向的垂直振动完全解耦。 式中

KZF2(Kp1sin21Kq1cos21) KZR2(Kp2sin22Kq2cos22)

LF、LR分别为前后悬置点至动力总成质心的x 坐标。

在确定前后悬置的位置时,考虑到动力总成在高频下的弹性弯曲振动,为了减小悬置元件的变形,应使悬置点布置在动力总成弯曲振型的节点上。当前悬置的位置确定后,可用撞击中心理论来确定后悬置的位置,即后悬置应尽可能布置在前悬置的共轨点上。这样可以使前后悬置的冲击不相互影响,从而达到良好的隔振效果。

动力总成方案

悬置方案设计

动力总成控制系统算法开发工程师

上海通用东岳汽车动力总成有限公司简介

CATARC混合动力总成简介(CATARC Hybrid System, CHS)

汽车总成(系统)所属零部件界定范围

上海通用东岳汽车有限公司上海通用东岳动力总成有限公

系统设计总结

关于发布动力总成公司企业文化提升计划的通知

艾尔多汽车动力总成开业[小编推荐]

动力总成悬置系统设计总结
《动力总成悬置系统设计总结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档