人人范文网 范文大全

中考数学二次函数压轴题(含答案)

发布时间:2020-03-04 06:35:08 来源:范文大全 收藏本文 下载本文 手机版

2017年中考数学冲刺复习资料:二次函数压轴题

面积类

1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式.

(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.

(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

考点:二次函数综合题. 专题:压轴题;数形结合. 分析:

(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答:

解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1;

∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

- 12)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=;

∴抛物线的解析式为:y=x2﹣x﹣2.

(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA•OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0).

(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;

设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:

x+b=x2﹣x﹣2,即: x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4.

所以点M即直线l和抛物线的唯一交点,有:

,解得:即 M(2,﹣3).

过M点作MN⊥x轴于N,

S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

- 3t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;

(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值. 解答:

解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得

解得

,所以抛物线的解析式是y=x2﹣2x﹣3.

设直线AB的解析式是y=kx+b,

把A(3,0)B(0,﹣3)代入y=kx+b,得所以直线AB的解析式是y=x﹣3;

(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3), 因为p在第四象限,

所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t, 当t=﹣=时,二次函数的最大值,即PM最长值为

=

=,

,解得

则S△ABM=S△BPM+S△APM=(3)存在,理由如下: ∵PM∥OB,

∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形, ①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3. ②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=去),所以P点的横坐标是

(舍去),t2=

,所以P

,t2=

(舍③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=点的横坐标是.

- 53)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可. 解答:

解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的, 又A(0,1),B(2,0),O(0,0), ∴A′(﹣1,0),B′(0,2). 方法一:

设抛物线的解析式为:y=ax2+bx+c(a≠0), ∵抛物线经过点A′、B′、B,

∴,解得:

,∴满足条件的抛物线的解析式为y=﹣x2+x+2.

方法二:∵A′(﹣1,0),B′(0,2),B(2,0), 设抛物线的解析式为:y=a(x+1)(x﹣2) 将B′(0,2)代入得出:2=a(0+1)(0﹣2), 解得:a=﹣1,

故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2; (2)∵P为第一象限内抛物线上的一动点,

设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2. 连接PB,PO,PB′,

∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB, =×1×2+×2×x+×2×y, =x+(﹣x2+x+2)+1, =﹣x2+2x+3.

∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1, 假设四边形PB′A′B的面积是△A′B′O面积的4倍,则 4=﹣x2+2x+3, 即x2﹣2x+1=0, 解得:x1=x2=1,

此时y=﹣12+1+2=2,即P(1,2).

- 71)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.

(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.

(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD方程求出P点的坐标. 解答:

解:(1)∵顶点A的横坐标为x=﹣∴当x=1时,y=1﹣5=﹣4, ∴A(1,﹣4).

(2)△ABD是直角三角形.

将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3, ∴y=x2﹣2x﹣3,∴B(0,﹣3) 当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3 ∴C(﹣1,0),D(3,0),

BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20, BD2+AB2=AD2,

∴∠ABD=90°,即△ABD是直角三角形. (3)存在.

由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0) ∴OE=OF=5, 又∵OB=OD=3 ∴△OEF与△OBD都是等腰直角三角形 ∴BD∥l,即PA∥BD

则构成平行四边形只能是PADB或PABD,如图,

过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G. 设P(x1,x1﹣5),则G(1,x1﹣5) 则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|

=1,且顶点A在y=x﹣5上,

PB、②AB

PD,然后结合勾股定理以及边长的等量关系列

- 9考点:二次函数综合题..专题:压轴题. 分析:(1)根据抛物线y=即可;

(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可.

(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可; (4)利用MN∥BD,得出△OMN∽△OBD,进而得出△PMN的面积,利用二次函数最值求出即可. 解答:

解:(1)∵抛物线y=∵顶点在直线x=上,∴﹣

=﹣

经过点B(0,4)∴c=4,

=,∴b=﹣

,得到ON=

,进而表示出

经过点B(0,4),以及顶点在直线x=上,得出b,c∴所求函数关系式为;

, (2)在Rt△ABO中,OA=3,OB=4,∴AB=∵四边形ABCD是菱形,∴BC=CD=DA=AB=5, ∴C、D两点的坐标分别是(5,4)、(2,0), 当x=5时,y=当x=2时,y=∴点C和点D都在所求抛物线上;

- 111)求点B的坐标;

(2)求经过点A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

考点:二次函数综合题..专题:压轴题;分类讨论. 分析:

(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.

(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.

(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点. 解答:

解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°, ∵∠AOB=120°,∴∠BOC=60°,

又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×∴点B的坐标为(﹣2,﹣

2);

=2

(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx, 将A(4,0),B(﹣2.﹣

2)代入,得

,解得,∴此抛物线的解析式为y=﹣

x2+

x

- 13考点:二次函数综合题..专题:压轴题. 分析:

(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;

(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;

(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案. 解答:

解:(1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°, ∴∠BCD=∠CAO,(1分) 又∵∠BDC=∠COA=90°,CB=AC, ∴△BCD≌△CAO,(2分) ∴BD=OC=1,CD=OA=2,(3分) ∴点B的坐标为(﹣3,1);(4分)

(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1), 则得到1=9a﹣3a﹣2,(5分) 解得a=,

所以抛物线的解析式为y=x2+x﹣2;(7分)

(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点;

则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分) 过点P1作P1M⊥x轴,

- 153)分别从①以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,去分析则可求得答案. 解答:

解:(1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°, ∴∠BCD=∠CAO,

又∵∠BDC=∠COA=90°,CB=AC, ∴△BDC≌△COA, ∴BD=OC=1,CD=OA=2, ∴点B的坐标为(3,1);

(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1), ∴1=9a﹣3a﹣2, 解得:a=,

∴抛物线的解析式为y=x2﹣x﹣2;

(3)假设存在点P,使得△ACP是等腰直角三角形, ①若以AC为直角边,点C为直角顶点,

则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),

∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°, ∴△MP1C≌△DBC, ∴CM=CD=2,P1M=BD=1,

∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;

②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC, 得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2), 同理可证△AP2N≌△CAO, ∴NP2=OA=2,AN=OC=1,

∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;

- 17

分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;

(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;

(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=

3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=

BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直

,即可求出点P的坐标. 线PQ的解析式为y=﹣x﹣1,然后解方程组解答:

解:(1)设直线BC的解析式为y=mx+n, 将B(5,0),C(0,5)两点的坐标代入, 得,解得

,所以直线BC的解析式为y=﹣x+5;

将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c, 得,解得

,所以抛物线的解析式为y=x2﹣6x+5;

(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5), ∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+∴当x=时,MN有最大值

(3)∵MN取得最大值时,x=2.5, ∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5). 解方程x2﹣6x+5=0,得x=1或5, ∴A(1,0),B(5,0), ∴AB=5﹣1=4,

∴△ABN的面积S2=×4×2.5=5, ∴平行四边形CBPQ的面积S1=6S2=30.

- 192)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

考点:二次函数综合题..专题:压轴题. 分析:

(1)利用待定系数法求出直线解析式; (2)利用待定系数法求出抛物线的解析式;

(3)关键是证明△CEQ与△CDO均为等腰直角三角形;

(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.

利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小. 如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值. 解答:

解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0). 设直线CD的解析式为y=kx+b(k≠0), 将C(0,1),D(1,0)代入得:解得:b=1,k=﹣1,

∴直线CD的解析式为:y=﹣x+1.

- 21Rt△C′NC″中,由勾股定理得:C′C″===.

. 综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为

12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标. (2)试判断△BCD的形状,并说明理由.

(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

考点:二次函数综合题..专题:压轴题. 分析:

(1)利用待定系数法即可求得函数的解析式;

(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断; (3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解. 解答:

- 23AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=3﹣b,则即=,解得:b=﹣,故P是(0,﹣)时,则△ACP∽△CBD一定成立;

=,④当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0). 则AP=1﹣d,当AC与CD是对应边时,两个三角形不相似;

⑤当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0). 则AP=1﹣e,当AC与DC是对应边时,总之,符合条件的点P的坐标为:

=

,即

=

,解得:e=﹣9,符合条件.

=

,即

=

,解得:d=1﹣

3,此时,

对应练习

13.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式;

(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;

(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.

- 25x=,y=﹣=﹣,

∴点E的坐标为(,﹣),

设过点E的直线与x轴交点为F,则F(∴AF=﹣1=,

,0),

∵直线AC的解析式为y=x﹣1, ∴∠CAB=45°, ∴点F到AC的距离为×又∵AC=∴△ACE的最大面积=×

3==3×

, , =

,此时E点坐标为(,﹣).

14.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴方程;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式; (3)试判断△AOC与△COB是否相似?并说明理由;

(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

- 27BC的解析式为:y=x+4.

(3)可判定△AOC∽△COB成立. 理由如下:在△AOC与△COB中, ∵OA=2,OC=4,OB=8, ∴,

又∵∠AOC=∠BOC=90°, ∴△AOC∽△COB.

(4)∵抛物线的对称轴方程为:x=3, 可设点Q(3,t),则可求得: AC=AQ=CQ=i)当AQ=CQ时, 有=

, ===

, , =

25+t2=t2﹣8t+16+9, 解得t=0, ∴Q1(3,0); ii)当AC=AQ时, 有=,

t2=﹣5,此方程无实数根,

∴此时△ACQ不能构成等腰三角形; iii)当AC=CQ时, 有=

整理得:t2﹣8t+5=0, 解得:t=4±,

),Q3(3,4﹣

). ∴点Q坐标为:Q2(3,4+

- 292)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式; (3)首先作出▱PACB,然后证明点P在抛物线上即可. 解答:

解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°. ∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°, ∴∠OAB=∠ACD,∠OBA=∠CAD. ∵在△AOB与△CDA中,

∴△AOB≌△CDA(ASA). ∴CD=OA=1,AD=OB=2, ∴OD=OA+AD=3, ∴C(3,1).

∵点C(3,1)在抛物线y=x2+bx﹣2上, ∴1=×9+3b﹣2,解得:b=﹣. ∴抛物线的解析式为:y=x2﹣x﹣2.

(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=∴S△ABC=AB2=.

设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1), ∴,

解得k=﹣,b=2,

- 31CBG=∠APH, 在△PAH和△BCG中,

∴△PAH≌△BCG(AAS), ∴PH=BG=1,AH=CG=3, ∴OH=AH﹣OA=2, ∴P(﹣2,1).

抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上. ∴存在符合条件的点P,点P的坐标为(﹣2,1).

中考二次函数压轴题

中考数学挑战压轴题(含答案)

中考数学压轴题解题技巧

中考数学专题二次函数

中考数学几何证明压轴题

安徽省中考数学压轴题赏析

中考数学压轴题四个解题技巧

中考数学压轴题四个解题技巧

中考数学压轴题四个解题技巧

如何应对中考数学压轴题

中考数学二次函数压轴题(含答案)
《中考数学二次函数压轴题(含答案).doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档