人人范文网 证明

几何证明(精选多篇)

发布时间:2020-11-15 08:38:27 来源:证明 收藏本文 下载本文 手机版

推荐第1篇:几何证明

2013几何证明

1.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在

ABC

中,C900

,A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接

圆交于点E,则DE的长为_____

_____

2.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC为圆的内接三角形,

BD为圆的弦, 且BD//AC.过点A 做圆的切线与DB的延长线交于点E, AD与BC交于点F.若AB =

AC, AE = 6, BD = 5, 则线段CF的长为

______.

3.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(几何证明选讲选做题)如图,AB

是圆O的直径,点C在圆O上,延长BC到D使BCCD,过C作圆O的切线交AD于E.若

AB6,ED2,则BC_________.

E

第15题图

4.(2013年高考四川卷(理))设P1,P2,

,Pn为平面内的n个点,在平面内的所有点中,若点P到

P1,P2,

,Pn点的距离之和最小,则称点P为P1,P2,,Pn点的一个“中位点”.例如,线段AB上

的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;[来源:学#科#网] ②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点A,B,C,D共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点.

其中的真命题是____________.(写出所有真命题的序号数学社区)

5.(2013年高考陕西卷(理))B.(几何证明选做题) 如图, 弦AB与CD相交于O内一点E, 过E作

BC的平行线与AD的延长线相交于点P.已知PD=2DA=2, 则PE=_____.

6.

(2013年高考湖南卷(理))如图2,O中,弦AB,CD相交于点

P,PAPB

2,PD1,则圆心O到弦CD的距离为____________.

7.(2013年高考湖北卷(理))如图,圆O上一点C在直线AB上的射影为D,点D在半径OC上的射

影为E.若AB3AD,则CE

EO

的值为___________.C

A

B

第15题图

8.(2013年高考北京卷(理))如图,AB为圆O的直径,PA为圆O的切线,PB与圆11.修4-1:几何证明选讲]本小题满分10分.

如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC2OC O相交于D.若PA=3,PD:DB9:16,则PD=_________;AB=___________.

求证:AC2AD[来源:学.科.网]

9.选修4—1几何证明选讲:如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点

D,E,F分别为弦AB与弦AC上的点,且BCAEDCAF,B,E,F,C四点共圆.

(Ⅰ)证明:CA是△ABC外接圆的直径;

(Ⅱ)若DBBEEA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.

10.选修4-1:几何证明选讲

如图,AB为O直径,直线CD与O相切于E.AD垂直于CD于D,BC垂直于CD于

C,EF,垂直于F,连接AE,BE.证明:

(I)FEBCEB;(II)EF2ADBC.

推荐第2篇:几何证明

1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在

其他直线上截得的线段_________.

推论1: 经过三角形一边的中点与另一边平行的直线必______________.

推论2: 经过梯形一腰的中点,且与底边平行的直线________________.

2.平行线分线段成比例定理:三条平行线截两条直线,所得的________________成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段___________.

3.相似三角形的性质定理:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于______;相似三角形周长的比、外接圆的直径比、外接圆的周长比都等于

_________________;

相似三角形面积的比、外接圆的面积比都等于____________________;

4.直角三角形的射影定理:直角三角形斜边上的高是______________________的比例中项;两直角边分别是它们在斜边上_______与_________的比例中项.

5.圆周角定理:圆上一条弧所对的圆周角等于它所对的____________的一半.

圆心角定理:圆心角的度数等于_______________的度数.

推论1:同弧或等弧所对的圆周角_________;同圆或等圆中,相等的圆周角所对的弧_______.

o推论2:半圆(或直径)所对的圆周角是____;90的圆周角所对的弦是________.

弦切角定理:弦切角等于它所夹的弧所对的______________.

6.圆内接四边形的性质定理与判定定理:

圆的内接四边形的对角______;圆内接四边形的外角等于它的内角的_____.

如果一个四边形的对角互补,那么这个四边形的四个顶点______;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点_________.

7.切线的性质定理:圆的切线垂直于经过切点的__________.

推论:经过圆心且垂直于切线的直线必经过_______;经过切点且垂直于切线的直线必经过______.

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.

8.相交弦定理:圆内两条相交弦,_____________________的积相等.

割线定理:从圆外一点引圆的两条割线,_____________的两条线段长的积相等.

切割线定理:从圆外一点引圆的切线和割线,切线长是__________的比例中项.

切线长定理:从圆外一点引圆的两条切线,它们的切线长____;

圆心和这点的连线平分_____的夹角.

推荐第3篇:几何证明

几何证明

1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,

求∠EAD、∠DAC、∠C的度数

2.已知∠BED=∠B+∠D,试说明AB与CD的位置关系

3.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。

4.如图,已知AB//CD,AE//CF,求证:BAEDCF

AEFCD B

5.如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:

AD//BC。

6.如图,已知AB//CD,B40,CN是BCE的平分线,

A

D

F

B

C

E

CMCN,求BCM的度数。

7.如图若FD//BE,求123的度数

A

N

M

C

D

E

第三题

o

8.如图已知CAOC,OC平分AOD,OCOEC63求D,BOF的度

第四题

9.已知如图DB//FG//EC,若ABD60,ACE36AP平分BAC求PAG的度数

第五题

10.,已知如图AC//DE,DC//FE,CD平分BCA,那么EF平分BED?为什么?

B

11.1)已知三角形三边长分别是4,5,6-x,求x的取值范围

(2)已知三角形三边长分别是m,m-1,m+1,求m的取值范围

oo

12.在ABC中,B70BAC:BCA3:2,CDAD垂足为D且ACD35

oo

求BAE的度数

A50oD44 13.已知AC,BD交与O,BE,CE分别平分ABD,ACD且交与E,

o

求E的度数。

E

o

14.ACE90AC=CE,B为AE上的一点,EDCB于D,AFCB交CB的延长

线于F,求证:AF=CD

第22题

15,已知AB=CD,BC=DA,E,F为AC上的两个点,且AE=CF,求证BF//DE

第23题

16.AD,BC交于D,BEAD于E,DFBC于F且AO=CO,BE=DF,求证 AB=CD

o

17.中AB=AC,BAC90分别过BC做过A点的直线的垂线,垂足为D,E,求证DE=BD+CE

第25题

推荐第4篇:几何证明

龙文教育浦东分校学生个性化教案

学生:钱寒松教师:周亚新时间:2010-11-27

学生评价◇特别满意◇满意◇一般◇不满意

【教材研学】

一、命题

1.概念:对事情进行判断的句子叫做命题.

2.组成部分:命题由题设和结论两部分组成.每个命题都可以写成“如果„„,那么„„”的形式,“如果”的内容部分是题设,“那么”的内容部分是结论.

3.分类:命题分为真命题和假命题两种.判断正确的命题称为真命题,反之称为假命题.验证一个命题是真命题,要经过证明;验证一个命题是假命题,可以举出一个反例.

二、互逆命题

1.概念:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个

命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个叫做原命题,则另一个就叫做它的逆命题.

2.说明:

(1)任何一个命题都有逆命题,它们互为逆命题,“互逆”是指两个命题之间的关系;

(2)把一个命题的题设和结论交换,就得到它的逆命题;

(3)原命题成立,它的逆命题不一定成立,反之亦然.

三、互逆定理

1.概念:如果一个定理的逆命题也是定理(即真命题),那么这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.

2.说明:

(1)不是所有的定理都有逆定理,如“对顶角相等”的逆命题是“如果两个角相等,那么这两个角是对顶角”,这是一个假命题,所以“对顶角相等”没有逆定理.

(2)互逆定理和互逆命题的关系:互逆定理首先是互逆命题,是互逆命题中要求更为严谨的一类,即互逆命题包含互逆定理.

所以∠C=∠C’=90°,即△ABC是直角三角形.

【点石成金】

例1. 指出下列命题的题设和结论,并写出它们的逆命题.

(1)两直线平行,同旁内角互补;

(2)直角三角形的两个锐角互余;

(3)对顶角相等.

分析:解题的关键是找出原命题的题设和结论,然后再利用互逆命题的特征写出它们的逆命题.

(1)题设是“两条平行线被第三条直线所截”,结论是“同旁内角互补”;逆命题是“如果两条直线被第三条直线所截,同旁内角互补,那么这两条直线平行”.

(2)题设是“如果一个三角形是直角三角形”,结论是“那么这个三角形的两个锐角互余”;逆命题是“如果一个三角形中两个锐角互余,那么这个三角形是直角三角形”.

(3)题设是“如果两个角是对顶角”,结论是“那么这两个角相等”;逆命题是“如果有两个角相等,那么它们是课题:几何证明

对顶角”.

名师点金:当一个命题的逆命题不容易写时,可以先把这个命题写成“如果„„,那么„„”的形式,然后再把题设和结论倒过来即可.

例2.某同学写出命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是“如果一个三角形斜边上的中线等于斜边的一半,那么这个三角形是直角三角形”,你认为他写得对吗?

分析:写出一个命题的逆命题,是把原命题的题设和结论互换,但有时需要适当的变通,例如“等腰三角形的两底角相等”的逆命题不能写成“两底角相等的三角形是等腰三角形”,因为我们还没有判断出是等腰三角形,所以不能有“底角”这个概念.

解:上面的写法不对.原命题条件是直角三角形,斜边是直角三角形的边的特有称呼,该同学写的逆命题的条件中提到了斜边,就已经承认了直角三角形,就不需要再得这个结论了.因此,逆命题应写成“如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”.

名师点金:在写一个命题的逆命题时,千万要注意一些专用词的用法.

例3.如图,在△ABD和△ACE中,有下列四个等式:① AB=AC;②AD=AE;③ ∠1=∠2;④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)

解:选①②③作为题设,④作为结论.

已知:如图19—4—103,AB=AC,AD=AE,∠1=∠2.

求证:BD=CE,

证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD.

即∠BAD=∠CAE.

在△BAD和△CAE中,

AB=AC.∠BAD=∠CAE,AD=AE,

∴△BAD≌△CAE(S.A.S.) ∴BD=CE.

名师点金:本题考查的是证明三角形的全等,但条件较为开放.当然,此题的条件还可以任选其他三个.

【练习】

1.“两直线平行,内错角相等”的题设是____________________,

结论是_________________________

2.判断:(1)任何一个命题都有逆命题.()

(2)任何一个定理都有逆定理.()

【升级演练】

一、基础巩固

1.下列语言是命题的是()

A.画两条相等的线段B.等于同一个角的两个角相等吗

C.延长线段AD到C,使OC=OAD.两直线平行,内错角相等

2.下列命题的逆命题是真命题的是()

A.直角都相等B.钝角都小于180。

龙文教育浦东分校个性化教案

2 ABDEC.cn

C.如果x+y=0,那么x=y=0D.对顶角相等

3.下列说法中,正确的是()

A.一个定理的逆命题是正确的

B.命题“如果x0,那么xy

C.任何命题都有逆命题

D.定理、公理都应经过证明后才能用

4.下列这些真命题中,其逆命题也真的是()

A.全等三角形的对应角相等

B.两个图形关于轴对称,则这两个图形是全等形

C.等边三角形是锐角三角形

D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

5.证明一个命题是假命题的方法有__________.

6.将命题“所有直角都相等”改写成“如果„„那么„”的形式为___________。

7.举例说明“两个锐角的和是锐角”是假命题。

二、探究提高

8.下列说法中,正确的是()

A.每个命题不一定都有逆命题B.每个定理都有逆定理

c.真命题的逆命题仍是真命题D.假命题的逆命题未必是假命题

9.下列定理中,没有逆定理的是()

A.内错角相等,两直线平行B.直角三角形中两锐角互余

c.相反数的绝对值相等D.同位角相等,两直线平行

三、拓展延伸

10.下列命题中的真命题是()

A.锐角大于它的余角B.锐角大于它的补角

c.钝角大于它的补角D.锐角与钝角之和等于平角

11.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为()

A.0个B.1个C.2个D.3个

22

龙文教育浦东分校个性化教案

推荐第5篇:几何证明测试题

第一章测试题

1.半径为1的圆中,长度为1的弦所对的圆周角度数为:2.⊙O半径为5,弦AB=8,CD=6,且AB∥CD,则AB、CD间的距离是.3.过⊙O内一点P,的最长弦是10,最短的弦是6,那么OP的长为____________.

4.如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长。

5.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.

6 .如图,以□ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,的度数和EF的度数. 求BE

7.如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥AD。求证:DC是⊙O的切线。

A

8.如图,⊙O与△ABC三边分别截于DE、FG、HM,且DE=FG=HM,若∠A=70°,求∠BOC度数.A

OF

9.如图,C为⊙O直径AB延长线上的点,CD切⊙O于D点,CE平分∠DCA,交AD于E

CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F.连

结AE、EF.(1)求证:AE是∠BAC的平分线.(2)若∠ABD=60°,问:AB与EF是否平行?E

11.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,求证:(l)AC是⊙D的切线;(2)AB+EB

=AC.

中点,12.如图,AB、AC分别为⊙O的直径和弦,D为BCDE⊥AC于E,DE=6cm,CE=2cm,

(1)求证:DE是⊙O的切线;(2)求AC、AB的长.A

13.如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF,(1)求证:AE是∠BAC的平分线,(2)若∠ABD=60°,AB是否与EF平行,为什么?

14.如图,梯形ABCD中,∠C=90°,AD∥BC,AD+BC=AB,

求证:(1)以AB为直径的圆与CD相切;(2)以CD为直径的圆与AB相切.

A

B15.如图5,CD是⊙O的直径,BC是⊙O的切线,切点为C,BC=3,BF=AE∶

EF=8∶3. 1,2

图5

求:(1)线段EF的长; (2)⊙O的直径的长.

推荐第6篇:初二几何证明

24.(1)如图(1),△ABC是等边三角形,D、E分别是AB、BC上的点,且BDCE,连接AE、CD相交于点P.请你补全图形,并直接写出∠APD的度数;=

(2)如图(2),Rt△ABC中,∠B=90°,M、N分别是AB、BC上的点,且AMBC,BMCN,连接AN、CM相交于点P.请你猜想∠APM=°,并写出你的推理过程.24.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.

(1)求证:EFEG;

(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;

(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若ABa,BCb,求

EF的值. EG

24.问题1:如图1,在等腰梯形ABCD中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=1∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;

21∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出2问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=

你的猜想,并给予证明.

5.(丰台区)在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,

将三角板绕点O旋转.

(1)当点O为AC中点时,

①如图1, 三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);

②如图2, 三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;

(2)当点O不是AC中点时,如图3,,三角板的两直角边分别交AB,BC于E、F两点,若AO1, AC

4求OE的值.

OF

E

B F C 图1 图2 图3 F B F CA A

24. 已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AF=DE.

(1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;

(2)如图2,对角线AC与BD交于点O. BD,AC分别与AE,BF交于点G,点H.

①求证:OG=OH;

②连接OP,若AP=4,OP

AB的长.

1(1)答:

证明:

9.(房山区)(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,联结AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;

(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,联结BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;

(3)如图3,在(2)的条件下,联结GF、HD.

求证:①FG+BE

②∠HGF=∠HDF.

图2 B AGDG

B

第24题图1 FB

E第24题图2 F

B

E第21题图3 F

推荐第7篇:几何证明计算题

几何证明与综合应用

1、如图1,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,

2、CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;

(2)求证:AE=FC+EF.

2、如图2,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.

(1)求证:ADE≌CDE;

(2)过点C作CHCE,交FG于点H,求证:FHGH;

(3)设AD1,DFx,试问是否存在x的值,使ECG为等腰三角形,若存在,请求出x的

A

D

值;若不存在,请说明理由.E

F

B

C

H

G

23、如图3,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线

BC上,且PE=PB.(1)求证:① PE=PD ; ② PE⊥PD; (2)设AP=x, △PBE的面积为y.

① 求出y关于x的函数关系式,并写出x的取值范围; ② 当x取何值时,y取得最大值,并求出这个最大值.

4、如图4-1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,

连结CE并延长交AD于F.(1)求证:① △AEF≌△BEC;② 四边形BCFD是平行四边形;

(2)如图4-2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.

F

30°

D

B E 图

3C

D D

B

H

B

5、如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形. D A (1)AD与BC有何等量关系?请说明理由; (2)当ABDC时,求证:□ABCD是矩形.C B

图4-1 图4-

26、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交BCA的平分线于点E,交BCA的外角平分线于点F.

(1)探究:线段OE与OF的数量关系并加以证明;

(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由;

(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形? A

E FM N

B DC

7、如图-1,在边长为5的正方形ABCD中,点E、F分别是BC、DC

边上的点,且AEEF,

BE2.(1)求EC∶CF的值;

(2)延长EF交正方形外角平分线CP于点P(如图-2),试判断AE与EP的大小关系,并说明理

由;

(3)在图-2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证

明;若不存在,请说明理由.

P F

B E C B E C

8、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BDDF,G为DF中图-1 交BC于F,连接图-2 点,连接EG,CG.(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)

中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论

是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)

D D

图②

图③ 图①

9、在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于

点N.

(1)如图25-1,当点M在AB边上时,连接BN.①求证:△ABN≌△ADN;

②若∠ABC = 60°,AM = 4,∠ABN =,求点M到AD的距离及tan的值;

(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12).

试问:x为何值时,△ADN为等腰三角形.

M (图25-1) B B (图25-2) A

10、已知△ABC中,ABAC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD,连

结DE.

(1)如图1,当BAC120,DAE60时,求证:DEDE.

(2)如图2,当DEDE时,DAE与BAC有怎样的数量关系?请写出,并说明理由.

(3)如图3,在(2)的结论下,当BAC90,BD与DE满足怎样的数量关系时,△DEC

是等腰直角三角形?(直接写出结论,不必说明理由).

DD D

B DC B B E D E D E 图3 图1 图

211、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M 点在BC上运动时,保持AM和MN垂直,

(1)证明:Rt△ABM∽Rt△MCN;

(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置

D 时,四边形ABCN面积最大,并求出最大面积;

(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.

N

C M第22题

12、图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,

∠A=30o,∠E= 45o,∠EDF=∠ACB=90 o ,DE交AC于点G,GM⊥AB于M.

(1)如图①,当DF经过点C 时,作CN⊥AB于N,求证:AM=DN.

(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理

由.

EB B①

13、(1)观察与发现:小明将三角形纸片ABC(ABAC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由. A A

F

图① 图②

(2)实践与运用

将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D处,折痕为EG(如图 ④); 再展平纸片(如图⑤).求图⑤中的大小.

E D A DA D A

DC C B B C F  F图③ 图④ 图⑤

14、如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60.(1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx.

MN的形状是否发生改变?若不变,求出△PMN的周长;①当点N在线段AD上时(如图2),△P

若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

A A A D D DNF F F

B C B C B C MM 图1 图2 图

3D A D (第25题) A

F F

B C B C图5(备用) 图4(备用)

15、如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点

F.(1)求证:DE-BF = EF.

(2)当点G为BC边中点时, 试探究线段EF与GF之间的数量关系, 并说明理由.

(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).

A D

A D

E

FB C CG G B

图①

图②

推荐第8篇:几何证明三角形

1.在△ABC、△AED中,AB=AC,AD=AE,且∠CAB=∠DAE,若将△AED绕点A沿逆时针方向旋转,使D、E、B在一条直线上,CE=BD成立吗?若成立,请说明理由

1.已知点E、F在正方形ABCD的边BC、CD上,若E、F分别是BC、CD的中点,G在AE、BF的交点上

GD=AD2.已知BD、CE是△ABC的两条高,M、N分别是BC、DE的中点,EM=DM(2)MN⊥DE 求证:求证:(1)

3.正方形ABCD,E、F分别为BC、CD边上一点。EAF=45·(1)若∠。求证:EF=BE+DF(2)若△AEF绕A点旋转,

EAF=45·保持∠,问△CEF的周长是否随△AEF的位置的变化而变化?

4.已知正方形ABCD的边长为1,BC、CD上各有一点E、F,如果△CEF的周长为2,求∠EAF的度数 5.已知正方形ABCD,F为BC中点E为CD边上一点,且满足∠BAF=∠FAE求证:AF=BC+CE

6.已知P为正方形ABCD的对角线AC上一点(不与A、C重合)BC,PF⊥CD于点F,,PE⊥(1)若四边形PECF绕点C旋转,在旋转过程中是否总有BP=DP?若是,请证明之;若不是,请举出反例(2)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在旋转的过程中长度始终相等,并证明之

求任意三角形面积公式的方法?

7.某人在上午6点至7点之间去长跑,开始时看表,分针与时针成110度,跑完后再看,有、又成110度,问此人跑了多久?(表没停)

8.已知三角形ABC是等腰三角形,角C=90度,

推荐第9篇:几何证明6

☆☆☆☆☆ 初二数学课内练习☆☆☆☆☆ 初二数学课内练习☆☆☆☆☆

几何证明练习

(六)

一、如图,AD为△ABC的角平分线,过C作AD的垂线交AB于E点,O为垂足,EF∥BC,求

证:CE平分∠DEF.二、如图,BD、CE为△ABC的两条高线,在BD上取一点F,使BF=AC,在CE的延长线上取

一点G,使CG=AB,求证:(1)AG=AF;(2)AG⊥AF.三、已知:如图,AB⊥AD,AC⊥AE,AB=AC,AD=AE,求证:(1)BD=CE;(2)AF平分∠BFE.

四、如图,等腰Rt△ABC中,AB=AC,D为BC的中点,E、F分别在AB、AC上,且AE=CF.求证:(1)DE=DF;(2)∠EDF=90°.

五、已知:如图,正方形ABCD,BE=CF,求证:(1)AE=BF;(2)AE⊥BF.

六、如图,△ABC中,D、E分别为AB、AC的中点,过点C作CF∥AB交DE的延长线于F点,

求证:(1)DE=

BC;(2)DE∥BC.2

A

E

B

D

FC

G

E

A

D

B

C

C

F

D

E

B

A

☆☆☆☆☆ 初二数学课内练习☆☆☆☆☆ 初二数学课内练习☆☆☆☆☆

AEFBDCADGFBECADEFBC2

推荐第10篇:几何证明练习题

几何证明

1、已知:在⊿ABC中,AB=AC,延长AB到D,使AB=BD,E是AB的中点。求证:CD=2CE。

C

2、已知:在⊿ABC中,作∠FBC=∠ECB=

2∠A。求证:BE=CF。

B

C

3、已知:在⊿ABC中,∠A=900

,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,

D是BC的中点,求证:⊿RDQ是等腰直角三角形。

C

B

4、已知:在⊿ABC中,∠A=900

,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

5、如图甲,RtABC中,AB=AC,点D、E是线段AC上两动点,且AD=EC,AMBD,垂足为M,AM的延长线

交BC于点N,直线BD与直线NE相交于点F。

(1)试判断DEF的形状,并加以证明。

(2)如图乙,若点D、E是直线AC上两动点,其他条件不变,试判断DEF的形状,并加以证明。A

B

B

D

6、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。

C

7、已知:如图(1),在△ABC中,BP、CP分别平分∠ABC和∠ACB,DE过点P交AB于D,交AC于E, 且DE∥BC.求证:DE-DB=EC.

A

D

PEB图⑴C

8、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.

89、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);

(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明

你的结论。

A M B

(第9题图)

10、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE

11、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。

12、如图,在ΔABC中,AD平分∠BAC,DE||AC,EF⊥AD交BC延长线于F。求证: ∠FAC=∠B

F

第11篇:几何证明(一)

几何证明

(一)

例1.已知:A,B,C三点在同一直线上,△ABD和△BCE都是等边三角形,AE交BD于M,CD交BE于N求证:MN∥AC

C

例2.已知:AD是Rt△ABC斜边上的高,角平分线BE交AD于F,EG⊥BC交BC于G

求证:FG∥AC,AG⊥BE

例3.△ABC中∠ABC=∠ACB =80°,点P在AB上,且∠BPC=30°,求证:AP=BC

例4.从三角形的一个顶点向其他的两个角的平分线引垂线,两个垂足的连线平行于这个角的对边。

例5.已知:正方形ABCD中,P是AC上的任意点,过点P作PE⊥AB作PF⊥BC。求证:PD⊥EF

例6: △ABC内,∠BAC=60,∠ACB=40,P,Q分别在边BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的角平分线,求证:BQ+AQ=AB+BP.

例7:设等腰直角三角形ABC中,D是腰AC的中点,E在斜边BC上,且AE⊥BD,求证: ∠BDA=∠EDC

例8: 设△ABE, △ACF都是等腰直角三角形,AE,AF分别是各自的斜边,G是EF中点,求证:⊿GCB也是等腰直角三角形

例9: 分别以△ABC的边AB,AC为边在△ABC外侧作等边三角形△ABE,△ACF,D,M,N分别为BC,AE,AF的中点,求证:△DMN为等边三角形。

例10已知:⊙O和⊙Q相交于A,B,⊙Q经过点O,C是⊙O优弧AB上的一点,CB延长线交⊙Q于D,

求证:DO⊥AC

D

练习:

1.四边形ABCD中,∠A=∠B,AD=BC,则AB∥CD

2.分别以△ABC的边AB和BC为一边,向形外作两个正方形ABEF和BCGH,求证 AH=CE,AH⊥CE

3.已知:D,E,F是△ABC边BC,CA,AB的中点,H,G在形外,且HE

11⊥AC,HE=AC,GD⊥BC,GD=BC 22

求证:△FDG≌△HEFFG⊥FH

第12篇:浅谈几何证明

西华师范大学文献信息检索课综合实习报告

检索课题(中英文):浅谈几何证明 On the geometric proof

一、课题分析

几何是研究空间结构及性质的一门学学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何分为平面几何与立体几何、微分几何、内蕴几何、拓扑学。几何证明则是根据一些特定规则和标准,有公理和定理推到出几何命题的过程。我们则重点研究最为简单的平面几何和立体几何的简单证明。

几何证明的基本步骤分为:1.分析—分析图形的切入点及所求。2.证明—做出辅助线,综合运用定理,找出已知未知的联系或推翻命题的假设。3.整理—规范作答。对于任给我们一个简单的几何证明我们都可以应用这个三个步骤,但是每个题都有它的重难点,对于不同内型的几何证明题我们必须从不同的角度、不同的切入点、不同的方法去证明这个命题的正确与否。

常见的几何证明方法有反证法、数学归纳法、构造法、非构造性证明、穷举发、换质位法„这几种方法是我们最常用的方法。初高中的几何证明题里几乎的能用这几种方法解决。几何证明是初高中的一个重点,是学好几何的关键,所以掌握几何证明题的证明方法是比不可少的。而几何证明题的方法都是从推理证明和探索规律做起的,怎样培养这个推理证明和探索规律的能力那就是我们平时练习中必须解决的问题。

几何证明有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。有助于提高学生空间想像能力、几何直观能力和运用综合几何方法解决问题的能力。

几何证明题是初高中几何证明是培养学生逻辑推理能力的最好载体,到目前为

止还没有其他课程能够代替几何的这种地位。其次几何证明还包括直观、想象、

探究和发现的因素,这些对培养学生的创意也非常有利。所以学好几何证明对于

一个初高中学生来说是非常重要的。本文就对几何证明的关键、要点和学习展开

检索讨论。

二、选择检索工具

由于报告要求,我们将进入西华师范大学图书馆网站

http:///libweb/index.asp的“电子资源”各数据库查找课题相关

文献信息资料,辅助以手工检索和纸本期刊以及因特网上资源。

三、确定检索方法和途径

检索方法:直接法,抽取法和综合法。初定了一些检索词:(几何证明平

面几何空间几何),进行第一轮检索,主要通过

http:///libweb/index.asp,检索出了大批文献,然后进行了筛选,

选择了最新的文献,通过阅读文献有受到启发,增加了一些检索词,他们是:分

析研究应用。经过第二轮检索又查出另外一些相关主题的文献。综合了根

据时间,类目和数据库等的抽取和题目直接的搜索。

主要检索途径:关键字,题名

四、检索结果

1.从中国期刊全文数据库(CNKI-CJFD),维普中文科技期刊数据库(VIP)中文全

文数据库中进行全文检索

数据库1:中国期刊全文数据库(CNKI-CJFD)年限:2008-2012

检索式:几何证明 分类号:\"O*\" 标题:\"几何证明\"+关键词:\"几何证明\" 日

期:2008-2012

限定类目:理工A(数学物理力学天地生)、教育科学。

检出篇数:188个

题录1:罗江林的 如何学习几何证明来自《课外阅读:中下》 2012年 第

5期

题目2:许琴 的 一类平面几何的求职问题的向量解法来源《新课程.中学》2012年第一期

题目3:丁运来 的 对初中生几何证明题过程书写的教学分析 来源《学生之友.初中版》2012年第一期

题目4:刘延升 的2011年高考平面几何与解析 来源《理科考试研究.高中版》2012年第一期

数据库2 :万方数据知识平台期刊数据库

年限:2008-2012

限定类别:数学科学和化学文化、科学和教育

检索式:几何证明 分类号:\"O*\" 标题:\"几何证明\"+关键词:\"几何证明\" 日期:2008-2012

检出篇数:31篇

题录1:令标几个几何定理的几何纯几何证明来源《中学数学杂志.初中版》2008.02

题录2:龚洁林平面向量中“心”问题来源《新高考:高三语文数学外语》2011.12

题录3:龚晓兰一个“数学问题”几何证明来源《数学通报》2009.48

(5)

数据库3:CALIS联合目录公共检索

年份:不限

检索式:题目=“几何证明”

检出篇数:4篇

题录1:高中数学教学参考书.几何证明选讲单墫 冯惠愚南京.江苏教育出版社.2008馆藏:北京师范大学图书馆

题录2:几何证明题与作图题.赵华, 季家南京.江苏人民出版社1956馆藏:辽宁大学图书馆

数据库4:亚马逊图书

检索:图书题目=“几何证明”

题目1:平面几何分类证明李中正西南师范大学出版社2011年07月出版

题目2:几何定理机器证明的基本原理吴文俊科学出版社1984-08出版

数据库5:万方会议论文库

年份:不限

限定类别:数学科学和化学中的数学

检索式:题目=“几何证明”

检出篇数:29篇

题录1:欧式几何的公理体系和我过平面几何课本的历史演变

作者单位:首都师范大学

会议名称:首都师范大学课程报告论坛

主办单位:高等教育出版社

会议时间:2005年11月5日

题录2:欧拉与数学之美

作者单位:华东交通大学,南昌 330013

会议名称:纪念欧拉诞辰300周年暨《几何原本》中译400周年数学史国际会议

会议时间:2007年10月11日

主办单位:中国数学会,国际数学史委员会,四川师范大学

数据库6:万方外文文献检索

年限:2008-2012

限定类别:数学科学和化学文化、科学和教育

检索式:题目=“geometric proof”

检出篇数:160篇

题录1:A geometric non-existence proof of an extremal additive code

作者:Bierbrauer, J.;Marcugini, S.;Pambianco, F.期刊:Journal of Combinatorial Theory.Series ASCI2010,117(2)

题录2:Geometric Proof of a Ramsey-Type Result For Disjoint Empty Convex Polygons I作者:Bhaswar B.Bhattacharya ;Sandip Das

期刊:Geombinatorics2010,19(4)

五、检索结果的分析与综合。

几何证明题是初高中几何证明是培养学生逻辑推理能力的最好载体,到目前为止还没有其他课程能够代替几何的这种地位。其次几何证明还包括直观、想象、探究和发现的因素,这些对培养学生的创意也非常有利。

几何证明在数学学习必不可少的一部分。就拿四川省2010年高考数学理科题来说,几何题在其中占有大的一部分(选择题4道、填空题2道、解答题2道)。而几何证明题占其中的三分之一,即使分值不是很大,但如果你学好了几何证明,那么你的几何题也就迎刃而解。

那么如何才能学好几何证明呢?首先我们来讨论几何证明中遇到的主要困难。困难一几何证明中的逻辑要求非常严格迫使很多学生认为几何很抽象,不白我们究竟要做什么?困难二缺乏基本的逻辑,对一些数学常识性问题都不明白,导致对几何证明的语言表述不准确。怎样克服以上困难就是许多老师和学生所面临的问题。从许多学生的学习经验和老师的教学经验我们可以总结出学习几何证明非常重要的三点。第一,正确掌握几何用语,平时多整理几何定理和公理。第二,掌握几何证明的基本定理和公理的应用,以及一些常见的证明方法。第三,注重几何证明的分析思路的学习,学会一体多证。以及平时多加练习。

对于中学数学来说学习几何主要是要在脑中形成题目中所给出条件的几何图形!至于怎么形成几何图形就要平时多注意这几个方面:第一记住课本中给出的定理和公理,并要自己动手推到下以便加深印象。做到熟记活用。第二平时做题目的时候尽量画出每个几何题目的图形。这样有助于你可以充分运用到题目中的条件,不会出现大的遗漏。虽然这样做题慢,耗时长,但是有助于你将来做大题难题是的一种感觉的形成,就是我们所说的灵感。

如果打到以上几点,那么对于初高中的几何证明题对你来说就已经是小菜一碟了。

以上谈论的是初高中怎样学好几何证明,那么接下来我们探讨一下中外对几何证明的研究。中国对几何证明的研究起源很早,如祖冲之对圆周率的计算、勾股定理的证明„但中国经历封建社会就几乎没有前进。正是那几个世纪外国对几何的证明确实突飞猛进。出现了很多出名的数学家如欧拉、阿基米德、费马笛卡尔 等。最经几十年来中国随着大学教育的普及度于这方面的研究也取得了很大的成果。随着数学家在几何上的不断发展,几何已向原来的欧式空间逐渐发展到其他几个大的几何分支学上。比如,微分几何、内蕴几何、拓扑学等。这些分支学的难度远远大于欧式几何空间。

第13篇:高中几何证明

高中几何证明

一、

已知平行四边形ABCD,过ABC三点的圆O1,分别交AD.BD于E.F、过CDF三点的圆O2交AD于G。设圆O1.O2半径分别为R,r。

1.求证AC^2=AG*AD

2.AD:EG=R^2:r^

2连接AC、GC。利用两个圆转化角的关系,

∠AGC=180-∠DGC=180-∠DFC=∠BFC=∠BAC=∠ACD

于是两个三角形ACG和ADC相似。第一问由此立得。

同样利用上述相似,∠GCA=∠ADC=∠ABC。于是由“弦切角等于圆周角”,说明GC与圆O1相切。于是GC^2=GE*GA。

在两个圆中利用正弦定理,不难发现R/r=BC/CD=AD/CD。此时

AD/EG=AG*AD/AG*EG=AC^2/GC^2=(AC/GC)^2=(AD/CD)^

2最后一个等式仍然源于前述相似

二、

因为不能上传图片,,所以口叙述一下,,高手们都可以想象出来吧

在一个圆的圆上选不重合的四点,,,连接成一个非平行四边形非梯形的四边形,,也就是内切四边形吧,,然后延长其中两条边,,交于点A,,再延长另外两条边交于点B,,然后过A点做圆的两条切线,,切线交圆于点C和D,,怎样证明B,C,D共线?

用调和点列的方法较为容易但方法的掌握不在高中的要求内

下面采用简单的定理来证明比较麻烦

首先,设圆内接四边形为四边形ABCD,AB与DC交于点p,AD与BC交于点Q,过点Q做圆O的两条切线,切点分别为点E和点F.再设AC与BD交于点R,下面来证明一个更强的结论:p、F、R、E共线.

设OQ交EF于L,pR交AQ于M,EF交AQ于点M\',连结OF、OE、AL、OA、OD,并延长AL到S.由Menelaus定理,

AB/Bp×pC/CD×DQ/QA=1-----------------

1由Ceva定理,

AB/Bp×pC/CD×DM/MA=1-----------------

2由

1、2,

DM/MA=DQ/QA------------------*

另一方面,

由射影定理,

QE^2=QL×QO-3

由切割线定理,

QE^2=QD×QA-4

由3,4,

QL*QO=QD*QA

所以O,L,D,A四点共圆

第14篇:初中几何证明

初中数学几何解题思路

从求证出发

你就要想,这道题要求证这个,就要有.....这些条件,再看已知,有了这些条件了,噢,还差这个条件。然后就找条件来证明这个还差的条件,

然后全部都搭配齐全了,就证出了题目了

记住,做题要倒推走

把已知的条件从笔在图上表示出来,方便分析

而且你要牢牢记住一些定理,还有一些特殊角,特殊形状等等他们的关系 当一些题实在证不出来时, 你要注意了,可能要添辅助线,比如刚才我说的 还差什么条件,你就可以画一个线段,平行线什么的来补充条件,你下子你就一目了然了,不过有些很难的看出的辅助线就要靠你的做题的作战经验了,你还要认真做题。

把这些牢牢记住,在记住老师教你们的公里定理些,你就已经成功大半了 作辅助线的方法和技巧

题中有角平分线,可向两边作垂线。

线段垂直平分线,可向两端把线连。

三角形中两中点,连结则成中位线。

三角形中有中线,延长中线同样长。

成比例,正相似,经常要作平行线。

圆外若有一切线,切点圆心把线连。

如果两圆内外切,经过切点作切线。

两圆相交于两点,一般作它公共弦。

是直径,成半圆,想做直角把线连。

作等角,添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线

实战演练

1.(10分)如图,矩形ABCD中,CE⊥BD于点E,延长EC,与∠BAD的平分线AF相交于

点F,

求证:CF=BD.2.(6分)已知平行四边形ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、

F、O.求证:四边形AFCE是菱形.

3.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.

(1)FG与DC的位置关系是,FG与DC的数量关系是;

(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.

F

D EG

B

以上知识来源于网络 B A C A C

第15篇:几何证明知识点

几何证明知识点

命题和证明

1、判断一件事情的句子,叫做命题。判断为正确的命题叫做真命题;判断为错误的命题叫做假命题。

2、数学命题通常由题设、结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。因此命题可以写成“如果······,那么······”的形式。

3、人们从长期实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始数据。

4、有些命题是从公理或其他真命题出发,用推理的方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理。

证明举例

1、由题设、定义以及已被确定的公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。

2、真命题的证明一般包括“画图、写已知求证、证明”三个基本步骤。“画图和已知求证”通常是告诉大家的,因此不必书写。

3、几何证明没有固定的方法可循,因此只能在训练的过程中,积累一般分析方法和思维方法。例如:证明线段、角相等的一般途径有哪些?证明两直线平行、垂直的一般途径有哪些?常用的添加辅助线的方法有哪几种?等等。

逆命题和逆定理

1、在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。

3、每个命题都有逆命题,但每个定理不一定都有逆定理。

线段的垂直平分线

1、定理:线段垂直平分线上任意一点到这条线段两个端点的距离相等。

2、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3、线段垂直平分线可以看作和一条线段两个端点距离相等的点的集合。

角的平分线

1、角的平分线的概念:从角的顶点出发,等分这个角的射线,叫做这个角的平分线。

2、角是轴对称图形,它的对称轴是这个角的平分线所在的直线。

3、角的平分线性质:在角的平分线上的点到这个角的两边的距离相等。

4、角的平分线性质的逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。

5、角的平分线可以看作这个角的内部(包括顶点)到角的两边距离相等的点的集合。

轨迹

1、点的轨迹:符合某些条件的所有的点的集合叫做点的轨迹。

2、基本轨迹

(1)和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线。

(2)在一个角的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线。

(3)到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆。

3、交轨法:先找出符合一部分作图要求的点的轨迹,再找出符合另一部分作图要求的点的轨迹,然后得出这两个轨迹的交点。这种利用轨迹相交进行作图的方法叫做交轨法。

直角三角形全等的判定

1、直角三角形是特殊的三角形,对于一般三角形全等的判定方法,直角三角形都适用。

2、直角三角形全等的判定定理

定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L.)。

直角三角形的性质

直角三角形的性质,可以从它的角、边以及特殊线段之间构成的各种关系的特征去理解。

1、定理1:直角三角形的两个锐角互余。

2、定理2:在直角三角形中,斜边上的中线等于斜边的一半。

推论1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。

推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。

勾股定理

1、在直角三角形中,斜边大于直角边。

2、勾股定理:直角三角形两条直角边的平方和,等于斜边的平方。

3、勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形。

4、勾股定理及其逆定理在实际生活中有着广泛的应用。

两点的距离公式

在直角坐标平面内:

1、x轴或平行于x轴的直线上的两点P1(x1,y), P2(x2,y)间的距离P1P2x1x2。

2、y轴或平行于y轴的直线上的两点Q1(x,y1),Q2(x,y2)间的距离

Q1Q2y1y2。

22PQxyy

3、在x轴上一点P与在轴上一点之间的距离 (x,0)Q(0,y)11111111

4、任意两点A(x1,y1),B(x2,y2)之间的距离公式是AB(x1x2)2(y1y2)2

第16篇:几何证明定理

几何证明定理

一.直线与平面平行的(判定)

1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)

二.平面与平面平行的(判定)

1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行

2.关键:判定两个平面是否有公共点

三.直线与平面平行的(性质)

1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线

四.平面与平面平行的(性质)

1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行

2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行

五:直线与平面垂直的(定理)

1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直

2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)

六.平面与平面的垂直(定理)

1.一个平面过另一个平面的垂线,则这两个平面垂直

(或者做二面角判定)

2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换

七.平面与平面垂直的(性质)

1.性质一:垂直于同一个平面的两条垂线平行

2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)

以上,是立体几何的定理和性质整理.是一定要记住的基本!!

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42定理1关于某条直线对称的两个图形是全等形

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60矩形性质定理1矩形的四个角都是直角

61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形。

第17篇:空间几何证明

立体几何中平行、垂直关系证明的思路

平行垂直的证明主要利用线面关系的转化:

线∥线线∥面面∥面性质

判定线⊥线线⊥面面⊥面

线∥线线⊥面面∥面

线面平行的判定:

a∥b,b面,aa∥面

a b 

线面平行的性质:

∥面,面,ba∥b

三垂线定理(及逆定理):

PA⊥面,AO为PO在内射影,a面,则

a⊥OAa⊥PO;a⊥POa⊥AO

P O a

线面垂直:

a⊥b,a⊥c,b,c,bcOa⊥

a O α b c

面面垂直:

a⊥面,a面⊥

面⊥面,l,a,a⊥la⊥

α a l β

a⊥面,b⊥面a∥b

面⊥a,面⊥a∥

a b 

定理:

1.如果一条直线上的两点在一个平面内,那么这条直线在此平面内。作用:判断直线是否在平面内;证明点在平面内;检验平面。 2.过不在一条直线上的三点,有且只有一个平面。

作用:确定平面;判断两个平面是否重合;证明点线共面。 推论:a.经过一条直线和这条直线外的一点,有且只有一个平面;

b.经过两相交直线,有且只有一个平面;

c.经过两条平行直线,有且只有一个平面。

3.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

作用:a.判定两个不重合平面是否相交;

b.判断点在直线上。

4.平行于同一条直线的两条直线互相平行。(平行线的传递性)。 5.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6.(直线与平面平行的判定定理)

平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行。 条件:a.一条直线在平面外;

b.一条直线在平面内;

c..这两条直线互相平行。 7.(平面与平面平行的判定定理)

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 条件:a.两条相交直线;

b.相交直线在一个平面内;

c.对应平行。

8.(直线与平面平行的性质定理)

一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

条件:a.一条直线与一个平面平行;

b.过这条直线的任一个平面与此平面相交;

c.交线与直线平行。 9.(平面与平面平行的性质定理)

如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 条件:a.两个平行平面:平面1和平面2和第三个平面:平面3

b.平面1与3相交,平面2与3相交

c.交线平行

点、线、面的相关证明

一.多点共线和多线共点问题证明

方法:公理3的熟练应用;两个相交平面有且只有一条公共直线。

1.如下图,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面α相交于点E,F,G,H。求证:E,F,G,H四点必定共线。

2.如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于Q.求证:B,Q,D1三点共线。

3.在正方体ABCD-A1B1C1D1中,E为AB 的中点,F为AA1的中点,求证:

a.E,C,D1,F四点共面;

b.CE,D1F,DA三线共点。

二.计算异面直线所成角度

方法:平移法和辅助线(中位线)构造角度

1.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角度为______________.2.如图所示,正四棱锥P-ABCD的底面面积为3,体积为√2/2,E为侧棱PC的中点,则PA与BE 所成的角为____________.

3.如图所示,正三棱锥S-ABC(侧面为全等的等腰三角形,底面为正三角形)的侧棱长与底面边长相等,E、F分别是SC、AB的中点,异面直线EF与SA所成的角为____________.

4.如下图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2.求: (1)三角形PCD的面积;

(2)异面直线BC与AE所成的角的大小.

5.在正方体ABCD—A1B1C1D1中,M、N、P、Q分别是棱AB、BC、CD、CC1的中点,直线MN与PQ所成的度数_______________.

第18篇:几何证明(选修)专题

几何证明(选修)专题学案

考纲要求:

1.几何证明选讲

(1)了解平行线截割定理,会证直角三角形射影定理.(2)会证明并应用圆周角定理、圆的切线的判定定理及性质定理.

(3)会证明并应用相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.(4)了解平行投影的含义,通过圆柱与平面的位置关系,了解平行投影;会证平面与圆柱面的

截线是椭圆(特殊情形是圆).

(5)了解下面定理:

定理 在空间中,取直线为轴,直线与相交于点顶点,为母线的圆锥面,任取平面π,若它与轴交角为

①②③>=<,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.,其夹角为围绕旋转得到以=0),则: 为(π与平行,记

(6)会利用丹迪林(Dandelin)双球(如图所示,这两个球位于圆锥的内部,一个位于平面π的上方,一个位于平面的下方,并且与平面π及圆锥面均相切,其切点分别为F、E)证明上述定理①情形:当β>α时,平面π与圆锥的交线为椭圆.(图中上、下两球与圆锥面相切的切点分别为点B和点C,线段BC与平面π相交于点A.)

(7)会证明以下结果:

①在(6)中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行,记这个圆所在平面为π\';

②如果平面π与平面π\'的交线为m,在(5)①中椭圆上任取一点A,该丹迪林球与平面π的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e.(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率.)

(8)了解定理(5)③中的证明,了解当无限接近时,平面π的极限结果学习过程

三、题海拾贝,提升能力

1(本小题满分10分)(2007宁夏卷)选修4-1:几何证明选讲

如图,已知AP是O的切线,P为切点,AC是O的割线,与O交于B,C两点,圆心O在PAC的内部,点M是BC的中点.

,P,O,M四点共圆; (Ⅰ)证明A

(Ⅱ)求OAMAPM的大小.

A

12(本小题满分10分)(2008宁夏卷)选修4-1:几何证明选讲

如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P。 (1)证明:OM·OP = OA2;

(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点。过B点的切线交直线ON

于K。证明:∠OKM = 90°。

3(本小题满分10分)(2009海南、宁夏卷)选修4—1;几何证明选讲

如图,已知ABC中的两条角平分线AD和CE相交于H,B=60,F在AC上,且

AEAF。

(1)证明:B,D,H,E四点共圆;

(2)证明:CE平分DEF。

4(本小题满分10分)(2010新课标卷)选修4—1:几何证明选讲

,过C点的圆的切线与BA的延长线交于ACBD如图:已知圆上的弧

E点,证明:

(Ⅰ)ACE=BCD。(Ⅱ)BC=BE x CD。

5(本小题满分10分)(2011新课标卷)选修4-1:几何证明选讲

如图,D,E分别为ABC的边AB,AC上的点,且不与ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x14xmn0的两个根.

(I)证明:C,B,D,E四点共圆;

(II)若A90,且m4,n6,求C,B,D,E所在圆的半径.

1(Ⅰ)证明:连结OP,OM.

因为AP与O相切于点P,所以OPAP. 因为M是O的弦BC的中点,所以OMBC. 于是OPAOMA180°. 由圆心O在PAC的内部,可知四边形APOM的对角互补,所以A,P,O,M四点共圆. (Ⅱ)解:由(Ⅰ)得A,P,O,M四点共圆,所以

A

OAMOPM. 由(Ⅰ)得OPAP.

由圆心O在PAC的内部,可知OPMAPM90°. 所以OAMAPM90°

2.解:

(Ⅰ)证明:因为MA是圆O的切线,所以OAAM. 又因为APOM,在Rt△OAM中,由射影定理知,

················································································································ 5分 OA2OMOP. ·(Ⅱ)证明:因为BK是圆O的切线,BNOK. 同(Ⅰ),有OBONOK,又OBOA, 所以OPOMONOK,即又∠NOP∠MOK,

所以△ONP∽△OMK,故∠OKM∠OPN90. ················································ 10分 3解:

(Ⅰ)在△ABC中,因为∠B=60°, 所以∠BAC+∠BCA=120°.因为AD,CE是角平分线, 所以∠HAC+∠HCA=60°, 故∠AHC=120°.

于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°, 所以B,D,H,E四点共圆。

(Ⅱ)连结BH,则BH为ABC的平分线,得

HBD30°

由(Ⅰ)知B,D,H,E四点共圆,

所以CEDHBD30° 又AHEEBD60°,由已知可得EFAD, 可得CEF30° 所以CE平分DEF

ONOM

. 

OPOK

, ACBD4解: (Ⅰ)因为

所以BCDABC.

又因为EC与圆相切于点C,故ACEABC

所以ACEBCD.……5分 (Ⅱ)因为ECBCDB,EBCBCD, 所以BDCECB,故即BCBE 5解:

(I)连接DE,根据题意在△ADE和△ACB中,

AD×AB=mn=AE×AC,即

BCCD

.

BEBC

……10分 C.D

ADAE

.又∠DAE=∠CAB,从而△ADE∽△ACB

ACAB

因此∠ADE=∠ACB所以C,B,D,E四点共圆。

(Ⅱ)m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.

取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=900,故GH∥AB, HF∥AC.HF=AG=5,DF= 故C,B,D,E四点所在圆的半径为52

(12-2)=5.2

第19篇:初二上册几何证明

新 课 程 教 育 在 线www.daodoc.com

昂立新课程VIP辅导讲义

学校地址:上海市徐汇区广元西路45号3层学员服务热线:31265528

1 / 4

学校地址:上海市徐汇区广元西路45号3层学员服务热线:31265528

2 / 4

学校地址:上海市徐汇区广元西路45号3层学员服务热线:31265528

3 / 4

学校地址:上海市徐汇区广元西路45号3层学员服务热线:31265528

4 / 4

第20篇:七下几何证明1

七下几何证明

11.如图26:已知点D、G在直线AB上,点E、F分别在直线AC、BC上,DE∥BC,

∠EDC=180º−∠GFC,问:GF与DC平行吗?为什么?

A

E

BCF 第26题图

2.已知:∠AED=∠C,∠DEF=∠B, 请你说明∠1与∠2互补.B

3.如图,已知A

BC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证12.

4.如图,在ABC中,ACB90,CDAB于D,E、F分别为AB、AC上的点,且AFEB.试说明:EF‖CD的理由.A D E 2 C

5.如图,在△ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.

6.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.

7.如图,已知∠ADC =∠ABC,DE、BF分别平分∠ADC和∠ABC,且∠1=∠2,试说明AB // DC的理由.

F C

AE B

8.已知:如图,,∠1=∠2, AB∥DG,AD⊥BC,试说明EF⊥BC。

C

D

G

BEA

几何证明
《几何证明.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档