人人范文网 范文大全

11求极限方法小结

发布时间:2020-03-03 22:15:17 来源:范文大全 收藏本文 下载本文 手机版

求极限方法小结

求极限方法大概归结为:一 利用单调有界数列有极限先证明极限的存在性,再利用题中条件求出极限。二 转化为已知极限。这里通常利用如下手段进行转化。

(一)夹逼定理

(二)初等变形,如分解因式、有理化、换元等。其依据为极限的运算法则(四则运算法则、复合法则、有界乘无穷小、连续函数极限值等于函数值、将求数列极限有的可转化为求函数极限、泰勒公式)

(三)

ana,等价无穷小替换

(四)洛必达法则及中值定理

(五)公式:limn

则limna1a2

ana;a

(六)转化为级数。 三 转化nn

为定积分。另外对分段函数在分段点的极限可能要考察左右极限。记

an0住以下极限是有好处的。limn

nxa

1;n1a

0;

1nsinx011lim11;lim, (型);(型) 1elim1ex0nxx0nx

一 利用单调有界数列定理求极限

例 1 x1

3,xn1limxn n

练习

1 x1

,xn1limxn n

2x111,xn11xn,求limxn n22

n 例 2 已知0x1,xn1sinxn,求limxn

练习limsinsinsinn n

n例3已知方程xnxn1x1(n2)在0,1内有唯一正根记为xn,证明limxn

存在并求limxn。 n

二 转化为已知极限

(一)夹逼定理

例1 lim

n!, nnn



2 limn

111

练习1 lim222 nn1n2nn

:n3

nx1lim(12例3 (1)lim(2)xxx0

x

3).

x

(二)初等变形

2n1) 13

例1 (1)lim(333n

nnn

)(1)(1练习1:lim(1

nx33x2

(2)lim x1x44x3

3161112

) 2:lim(12)(12)(12) n23nn(n1)

xx2x3xnn31

lim练习1:lim,2: 3

: 3x1x11xxx11x

(3)lim

x

2x1

x2

2exex2exexln(12x)

练习1:xlim,2:xlim 3:lim ex2exex2exxln(13x)例2

(有理化)n

练习1

:x1

:x0x)tanx 例3 (换元)lim(1

x1

2sinx

例4(有界乘无穷小)lim xx

arctanx lim练习1:lim 2:xx01cosxln(1x)x

sinxx2sin

11 例5(将求数列极限转化为求函数极限)lim

n1nsin

n

ntan

111cos练习1:lim2:limcos nnnnn

n2

n

例6(两个重要极限的应用)

nsin (1)lim

n

xn

练习1:lim

x0

sinxn

sinx

x

m

2:lim

xa

sinxsina

xa

x2

(2)lim xx1

1

练习1:lim12:limcosx x0x

x

kx

ln1x1

cosx

x4

xsinx2(1cosx)sinxtanx

lim练习1:lim2: 43x0x0xx

(三)等价无穷小替换

例7(泰勒公式)lim

x0

e

x22

x0时,sinxx,tanxx,arcsinxx,arctanxx,1cosx

12x 2

ln(1x)x;ex1x;1x1x 例1 lim

x0

tanxsinx

sinx

练习1:lim

x1

1cosx

x1

x0

例2 lim

x0

lnxexxx

1x

3x5x1sinxcosxlimlim练习1

: 2: 3: x0x01sinpxcospxx12

esinx1

例3 lim x0arcsinx2

ecosxe

练习limx0tan2x例4

x0ln1xe1

(四)洛必达法则

0xsinxlncosax

lim例1(,型)(1)lim(2) x0x00xxcosxlncosbx

x0

练习1

:2:

x1sinx32

1

练习1:lim

xa

lnx

4:xlim

xn

(1x)eax12sinx

2:lim 3:lim x0xxxacos3xxn

n0 5:xlim

ex

xa

1x

0,n为自然数

例2(型)lim(

11) x0x2xtanx

11111) 2:lim(x) 3:lim(xx2ln(1)) 练习1:lim(

x1lnxx0xxx1e1x

x

xtan 例3(0型)limx2arcsinxcotx 2:limlnxln(x1) 练习1:lim

x0

x1

x (2)lim1x例4(01型)(1)limx

1x

cos

x

x1

x(3)limx1

11x

例5(微分中值定理)(1)lim

x0

tanxtansinxsectanxsecsinx

lim(2) 33x0sin2xsinxcostanxcoinx



ab2lim练习1:lim 2:arctanxa0,b0 x0x2aa

an

a;a

(五)公式:limana,则lim12

nnnn

(六)转化为级数

x

1x1x

x

三 转化为定积分

1n例 limnni1

1pnp练习1

:limln 2:lim

nnnp1n

p0

四 考察左右极限

x2esinx 例 lim1x0xx

e1

五 关于含参极限及已知极限确定参数

例1(含参极限)

x2(a1)xa1:limxax3a3

(xa)(x1)(x1)

limlim2xa(xa)(x2axa2)xa(xaxa2)a1

2a03aa0

1

练习limxsin

x0x

2(已知极限确定参数)(1

)x0

求出a,b。

(2

)limx)0求

,

x

并求limxx)(a0)

x

由limx)

0有0lim

x

x

x

x

x

lim)

xx得

lim

)=lim

x

x

求limxx

)

x

limx

x

lim

x

lim

b2

(c)x

x

b2c

2

(x21)2ab(x1)c(x1)2

练习lim0求a,b,c.2x1(x1)

求极限的方法小结

求极限的方法

求极限方法[材料]

经典求极限方法

求极限的方法

求极限的方法

求极限方法小结(实用易懂)(材料)

求极限的常用方法

求极限的一般方法

求函数极限的常用方法

11求极限方法小结
《11求极限方法小结.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档