人人范文网 教学设计

曲线运动教学设计(精选多篇)

发布时间:2021-06-15 07:47:04 来源:教学设计 收藏本文 下载本文 手机版

推荐第1篇:曲线运动教学设计

《曲线运动》教学设计

泰兴市第一高级中学 朱栋

一、设计思想

在旧教材中,《曲线运动》关于曲线运动的速度方向的教学,通常通过演示圆周运动的小球离心现象,演示砂轮火星痕迹实验,采取告知的方式,让学生知道曲线运动的速度方向为该位置的切线方向,由于轨迹是瞬间性,实验有效性差。在新教材中,通过曲线轨道实验演示曲线运动的方向,再告知速度方向是曲线的切线方向,与旧教材相比,能获得具体的轨迹和末速度的“方向”,但是无法证明速度方向是切线方向。

笔者通过简易自制器材,让学生通过探究过程获得曲线运动的速度方向,并自己获得如何画曲线运动的速度方向的方法,强调科学探究的过程。笔者还通过当堂设计自行车挡泥板,以便学生把自己获得的知识应用于实践,体验学以致用、知识有价的感受。还要求学生观察自行车的挡泥板验证自己的设计作为课外作业,体会STS的意义,提高科学素养。

二、教材分析

教学基本要求:知道什么叫曲线运动,知道曲线运动中速度的方向,能在轨迹图中画出速度的(大致)方向,知道曲线运动是一种变速运动,知道物体做曲线运动的条件。

发展要求:掌握速度和合外力方向与曲线弯曲情况之间的关系。

本课是整章教学的基础,但不是重点内容,通过实验和讨论,让学生体会到曲线运动的物体的速度是时刻改变的,曲线运动是变速运动,速度的方向是曲线的切线方向。

模块的知识内容有三点:

1、什么是曲线运动(章引);

2、曲线运动是变速运动;

3、物体做曲线运动的条件。

三、学情分析

在初中,已经学过什么是直线运动,什么是曲线运动,也知道曲线运动是常见的运动,但是不知道曲线运动的特点和原因。由于初中的速度概念的影响,虽然学生在第一模块学过速度的矢量性,但是在实际学习中常常忽略了速度的方向,也就是说学生对“曲线运动是变速运动”的掌握有困难。

学生分组实验时,容易滚跑小钢珠,要求学生小心配合。几何作图可能难以下手,教师可以适当提示。学生主要的学习行为是观察、回答、实验。

四、教学目标

1、知识与技能:

(1)知道什么叫曲线运动;

(2)知道曲线运动中速度的方向;

(3)能在轨迹图中画出速度的大致方向,能在圆周运动轨迹中规范地画出速度方向;

(4)知道曲线运动是一种变速运动;

(5)知道物体做曲线运动的条件;

(6)会判断轨迹弯曲方向(发展要求)。

2、过程与方法

(1)经历发现问题──猜想──探究──验证──结论──交流的探究过程;

(2)经历并体会研究问题要先从粗略到精细,由定性到定量,由特殊到一般再到特殊的过程;

(3)尝试用数学几何原理在物理研究中应用。

3、情感态度与价值观

(1)主动细心观察,注意关注身边的科学,积极参与学习活动。

(2)感受到科学研究问题源于生活实践,获得的结论服务于生活实践,体会学以致用的感受。

(3)初步感受下结论不能主观而要有科学依据的严谨的科学态度。

(4)初步养成小心翼翼做实验的习惯。

五、重点难点

重点:体验获得“曲线运动的速度方向是切线方向”的实验过程。会标出曲线运动的速度方向。

难点:如何获得曲线运动的速度方向是切线方向。如何画出曲线运动的速度方向。

六、教学策略与手段

在教学活动上:体现学生的主体性,体现教师的指导性和服务性。在教学媒体设计上:强调以试验教学为主,以多媒体为辅助(投影问题与习题)。在教学程序上基本上按照加涅信息加工模型。引起注意──告知学生学习目标──刺激回忆先决性的学习──呈现刺激材料──提供学习帮助──引出作业──提供作业──提供反馈──评价作业──促进保持和迁移,通过问题链把教、学、练、评有机整合。在学习过程上:突出学生发现问题──猜想──探究──验证──结论──应用。在探究方法上:突出整合数学知识解决物理问题。认知过程上:突出人类的学习规律和认知规律,即,由粗略研究到精细研究,由特殊到一般再到特殊的过程。在理念上:突出科学的研究源于生活实践,服务于生活实践;认识到“下结论必须要有科学依据”。

七、课前准备

学生无需预习课本,否则像已知谜底的猜谜活动那样,那些探究的活动和问答没有意义。

教师要做好教学用具准备工作。车速计数码照片;细线和摆球;矿泉水和小雨伞;砂轮、锯条和插座;小钢珠、黑墨水瓶、白纸,大的塑料三角板,量角尺,自制圆弧形有机玻璃,自制有机玻璃斜面,方形磁铁。调试多媒体设备。

八、教学过程

曲线运动

问题一:什么样的运动叫曲线运动?[投影]

师:人走路,驾车骑车、分吹雨打河流弯弯,篮球足球跑步等,飞机导弹卫星宇航行星,运动按照运动轨迹分为直线运动和曲线运动,物体运动的轨迹为曲线的运动叫曲线运动。请大家列举曲线运动现象。

生:举例曲线运动

师:曲线运动是很常见的运动。圆周运动是曲线运动的一种特殊现象。

(教学安排,简单扼要,节约时间)

问题二:做曲线运动的物体的速度有什么特点?[投影]

师:要研究物体的运动,我们必须研究物体的位移、速度、加速度等物理量,本堂课我们先研究曲线运动的速度的大小和方向有什么特点。

1、做曲线运动的物体的速度大小?[投影]

师:汽车里面有一个车速计(多媒体呈现数码照片),若果汽车拐弯时保持这个读数不变,那么,汽车做直线运动还是曲线运动?它的速度大小有无变化?

师:通常情况下,汽车拐弯要减速慢行,那么,汽车的慢行拐弯时,车上的车速计的读数如何变化?车还是做曲线运动吗?

师:这些事实说明,作曲线运动的物体的速度大小可以变化也可以不变(板书)。

2、做曲线运动的物体的速度方向?[投影]

汽车的拐弯时,速度方向有无变化?速度是一个矢量,它有方向性,那么做曲线运动物体的速度方向如何?

粗略研究(猜想):

演示1:教师演示摆球圆周运动时(先要求学生观察小球的运动方向),突然放手,小球飞出去。

演示2:教师把矿泉水到在一把小雨伞上(先要求学生观察水滴的运动方向),快速旋转小雨伞,雨滴从转动的小雨伞边缘飞出。

演示3:演示砂轮火星(要求砂轮圆面朝学生,以便学生观测大致切线方向)。

请学生到黑板上补画出小球、水滴、火星的方向。结果学生都会画出大致方向。

师:你们画出的方向是精确方向还是大致方向。如何画出精确的方向?

精细研究(探究、验证、结论)(重点难点):

物体做匀速直线运动,它的速度方向和运动轨迹方向一致。如果曲线运动的物体突然开始做匀速直线运动,那么直线运动的方向和曲线运动的末速度方向一致。(采取板画形式,师生共同回忆得出这个结论)

1、教师先演示投影:把小钢珠放在黑墨水瓶盖里转一下(内有一点点墨水),再放在半圆形有机玻璃轨道上运动并飞出,让钢珠在白纸上留下痕迹,同样在3/5半圆周,4/5半圆周上运动飞出,让学生猜测飞出方向由什么特点?(有机玻璃板说明:厚约5毫米,略小于小钢珠直径,圆弧半径15厘米,MN边稍长些,以便过MN做直线,根据半径大小确定圆心O位置。

学生猜想:切线方向

师:已知圆弧半径为15厘米。如何验证?请用几何方法作图验证。

生:标出飞出点和圆心,做圆心和飞出点的连线,用量角尺量出该连线和飞出轨迹直线的夹角,是否90度。

2、再分组实验,提醒同桌配合,小心钢珠滚跑。实验完毕,要求作图验证,并互相讨论交流。

3、交流和结论:

师:要引导学生得出正确的科学结论:“圆周运动的物体的速度方向为该点的切线方向”,而不能直接得出“曲线运动的的物体速度方向为该点的切线方向”。

4、如何在圆周运动的轨迹上标注速度方向?

请在圆周上任取两点,作出该位置的物体速度方向。并研究圆周运动的速度方向有什么特点?

学生:找出圆心,做圆心和某点连线,再做连线的垂线,标出箭头(精确画法)。

学生:不同位置,速度方向不一样。“圆周运动是变速运动”

(特别强调:刚才的实验是圆周运动,不能得出“曲线运动是变速运动”“曲线运动的速度方向是切线方向”的结论)

5、一般曲线运动的速度情况和圆周运动一样吗?(由特殊到一般)

师边画边讲:圆周是特殊的曲线,一般的曲线可以看成很多很多的圆弧构成,每一个圆弧都是圆周的一部分。所以,曲线运动可以看成无数个圆周运动构成,曲线上每一个位置的速度方向就是该点所在的圆周的切线方向,速度方向时刻在变化。

所以:“曲线运动的物体速度方向为该点的切线方向”“曲线运动是变速运动”[投影]。

6、如何画一般曲线运动的速度方向?

要求学生阅读课文33页关于切线的三个自然段。教师再作示范。让学生学会粗略画一般曲线运动的速度方向。

第一次课堂练习(及时反馈、巩固、评价、迁移)

1、作业本37页第3题。“和平”号空间站环绕地球运行的轨迹是直线还是曲线?运行速度保持不变还是时刻改变。

2、作业本37页第7题。要求在在汽车波浪形路径上三个位置标注速度的方向。

问题三:如何使物体做曲线运动?[投影]

演示投影:在投影仪上铺上白纸,放上一个高度1厘米左右自制的有机玻璃玻璃斜坡,中间刻一条直槽。把小钢珠放在墨水瓶盖里转一下,把小钢珠放在槽中滚下,先不用磁铁,轨迹是一条直线。(效果很好,轨迹很清晰)

师:如何使小钢珠拐弯?

生:用磁铁吸引。

教师演示并投影:磁铁用电机模型里的方形磁铁(效果很好)。

师:要使小钢珠会弯向右侧,磁体放在哪一侧?

生:右侧。教师演示结果。

师:要使小钢珠会弯向左侧,磁体放在哪一侧?

生:把磁铁放在左侧。教师演示结果。

师:如果放在正下方,小钢珠会作什么运动?

师:如果放在正上方,小钢珠会作什么运动?

师:你认为物体做曲线运动的条件是什么?

生:运动物体在一个外力作用下。

师:对这个外力有什么要求?

生:外力方向与运动方向有个夹角?

师:外力方向和运动方向有什么要求吗?

生:不能相同也不能相反,也就是不能在同一条直线。

师;如果在两侧各放一个磁铁,小钢珠运动轨迹会弯向哪边?

生:那边磁力大,弯向哪边。

引导学生得出结论(板书):

物体做曲线运动的条件:物体受到的合力的方向跟它的速度方向不在同一直线上。

巩固练习学生演示并分析:

师:怎么样使粉笔头作曲线运动?怎么使粉笔头作直线运动?原因分析。

第二次课堂练习(及时反馈、复习、巩固、评价、迁移)

1、作业本38页第6题:已知物体初速度方向和恒定的合外力方向,判断物体运动的大致轨迹。

课堂小结:[以问答题形式进行]

2、(投影)下面说法正确的?

A.曲线运动的速度大小一定是变化的

B.曲线运动的速度方向一定是变化的

C.曲线运动一定是变速运动

D.变速运动一定是曲线运动

E.做曲线运动的物体所受合力一定不为零。

F.合外力不为零的运动一定是曲线运动。

G.曲线运动的加速度一定不为零。

H.曲线运动的加速度一定为零。

问题四:这些知识有什么用处?

实际应用:给自行车设计挡泥板。

教师:如果轮子上粘有泥巴,随车轮转动,这些泥巴将沿什么样方向飞出?应该设计怎样的档泥板?

要求学生只画两个轮子,标注前轮和后轮,在轮子上画挡泥板。

教师投影展示学生的设计图,请学生讲解设计理念和依据。教师以倾听为主,可以以问题形式提出自己疑问作为点评,但不提供正确答案。(作为课外观测作业)

九、作业设计

教师要求学生到自行车棚观察自行车的挡泥板。对照自己的设计,做比较分析。推测设计师为什么要这样设计。

十、知识结构或板书设计

曲线运动

1、曲线运动:物体运动的轨迹为曲线的运动。

2、曲线运动的特点:是变速运动

速度大小可以变化也可以不变

速度方向为切线方向,时刻在变化

3、做曲线运动的条件:

物体受到的合力的方向跟它的速度方向不在同一直线上

【问题研讨】

1、钢珠的轨迹分析:

小钢珠滚出的轨迹和有机玻璃的圆周不是重合的,如图所示,相差一个钢珠的半径值,但是圆心和飞出点的连线与半径还是是垂直。由于小钢珠的半径远远小于圆弧的半径,这点相差可以忽略。如果学生能力较强,可以略作说明。

2、作业分析;

课堂上,学生对挡泥板的设计很感兴趣,但是由于教师对学生设计不做肯定或否定,而是说“你们都有自行车、或者天天看到自行车,有无注意观察,你们看到的自行车挡泥板是这么样的?让事实说话吧,请大家到停车场看看”。学生心理求知欲更强烈,课后许多学生立即去观察。结果晚自修时就有很多学生把观察到情形告诉我。我组织大家讨论,取得意想不到的效果。这个作业很有物理味道,体现STS教育,学生参与度强,观察细致,分析有理。

分类分析:

1、大部分自行车没有挡泥板

(学生的自行车)

2、小部分前轮的挡泥板为1/4圆周,后轮的挡泥板为1/2圆周。(教师的旧式自行车)

3、极少数自行车的后轮上有一小段斜向下或斜上翘的挡泥板,

4、极少数自行车的前轮有一小段水平或弧形挡泥板。

5、大家发现摩托车前轮后轮都有挡泥板,并且和老式自行车的挡泥板一样。

我们一起交流、讨论、推测那些设计师的设计的思想。归纳出几点:

1、赛车型自行车尽量减少车的重量和次要附件,可以不用挡泥板。

2、目前道路基本是水泥路或沥青路,泥巴很少见,挡泥板的功能淡化。

3、考虑到泥巴做斜上抛运动,挡泥板不一定要圆弧形,也不一定要那么长,也不必紧紧“包住”轮子。

4、美观需要。

2008-08-05 人教网

推荐第2篇:曲线运动教学设计专题

人教版、高一年级 §6.1 曲线运动 的教学设计

浦江二中

贾爱英

322200

一、教材分析

本节教材主要有两个知识点:曲线运动的速度方向和物体做曲线运动的条件.教材一开始比较曲线运动与直线运动,提出两者之间的明显区别,引出曲线运动的速度方向问题,紧接着通过观察一些常见的现象,得到曲线运动中速度方向是时刻改变的,且质点在某点的速度方向是曲线上该点的切线方向.再结合矢量的特点,给出曲线运动是变速运动。关于物体做曲线运动的条件,教材从实验入手得到,再通过实例加以说明,最后从牛顿第二定律角度从理论上加以分析。本节教材的知识内容和能力因素,是对前面所学知识的重要补充,是对运动和力的关系的进一步理解和完善,是进一步学习的基础.

二、教 学 目 标:

一、)知识与技能

l.、知道曲线运动中速度的方向,理解曲线运动是一种变速运动. 2.知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上. (

二、)过程与方法

1.体验曲线运动与直线运动的区别.

2.体验曲线运动是变速运动及它的速度方向的变化. (

三、)情感、态度与价值观

1.能领略曲线运动的奇妙与和谐,发展对科学的好奇心与求知欲.

2.有参与科技活动的热情,将物理知识应用于生活和生产实践中.

三、教学重点、难点:

(一)教学重点

1.什么是曲线运动.

2.物体做曲线运动的方向的确定.

3.物体做曲线运动的条件.

(二)教学难点

物体做曲线运动的条件.

四、教学方法:探究、讲授、讨论、练习

五、教 学手段:

教具准备:投影仪、投影片、斜面、小钢球、小木球、条形磁铁.

六、教学活动 [新课导入]

(展示问题)

师:前面我们学习过了各种直线运动,包括匀速直线运动、匀变速直线运动、自由落体运动等.下面来看这个小实验,判断该物体的运动状态.

(演示实验)

(1)演示自由落体运动.

师:该运动的特征是什么?

生:轨迹是直线.

(2)演示平抛运动.

师:该运动的特征是什么?

生:轨迹是曲线.

师:这里我们看到一种我们前面没有学过的运动形式,它与我们前面学过的运动形式有本质的区别.前面我们学过的运动的轨迹都是直线,而我们现在看到的这种运动的轨迹是曲线,我们把这种运动称为曲线运动.

概念:轨迹是曲线的运动叫曲线运动.

师:其实曲线运动是比直线运动普遍的运动情形,现在请大家举出一些生活中的曲线运动的例子.

生:微观世界里如电子绕原子核旋转;

宏观世界里如天体运行;

生活中如投标抢、掷铁饼、跳高、跳远等均为曲线运动. [新课教学]

(一)、曲线运动速度的方向

师:在前面学习直线运动的时候我们已经知道了任何确定的直线运动都有确定的速度方向,这个方向与物体的运动方向相同或相反,现在我们又学习了曲线运动,大家想一想我们该如何确定曲线运动的速度方向?在解决这个问题之前我们先来看几张图片(如图6.1—l、6.1—2).

师:观察图中所描述的现象,你能不能说清楚,砂轮打磨下来的炽热的微粒.飞出去的链球,它们沿着什么方向运动? 生:擦出的火星是砂轮与刀具磨擦出的微粒,由于惯性,以脱离砂轮时的速度沿切线方向飞出,切线方向即为火星飞出时的速度方向.对于链球也是同样的道理,它们也会沿着脱离点的切线方向飞出.

师:刚才的几个物体的运动轨迹都是圆,我们总结曲线运动的方向沿着切线方向,但对于一般的曲线运动是不是也是这样呢?下面我们来做个实验看一看,一般的曲线运动是什么情况. (演示实验)

如图6.1—3所示.水平桌面上摆一条曲线轨道,它是由几段稍短的轨道组合而成的.钢球由轨道的一端滚入(通过压缩弹簧射人或通过一个斜面滚入),在轨道的束缚下钢球做曲线运动.在轨道的下面放一张白纸,蘸有墨水的钢球从出口A离开轨道后在白纸上留下一条运动的轨迹,它记录了钢球在A点的运动方向.拿去一段轨道.钢球的轨道出口改在图中B点且同样的方法可以记录钢球在轨道B点的运动方向.观察一下,白纸上的墨迹与轨道(曲线)有什么关系? 生:墨迹与轨道只有一个交点,说明了墨迹所在的直线为轨道所在曲线在该点的切线,也就是说质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向.

师:很好.通过这个实验我们总结出了确定做曲线运动的物体在任意一点的速度方向。

明确了曲线运动的方向之后,我们来考虑这样一个问题:在运动过程中,曲线运动的速度和直线运动的速度最大的区别是什么? 生:在运动的过程中,直线运动的速度方向不发生变化,而曲线运动速度方向时刻在变.

师:很好.那我们由速度的性质知,速度是矢量,既有大小又有方向.在匀变速运动中,速度大小发生变化,我们说这是变速运动.而在曲线运动中.速度方向时刻在改变,我们也说它是变速运动.

实际上这个过程我们可以这样来理解:速度是矢量→速度方向变化→速度矢量就发生了变化→具有加速度→曲线运动是变速运动.

下面我们来看几个题目.

[课堂训练]

l.关于曲线运动,下列说法正确的是„„„„„„„„„„„„„(

)

A.曲线运动一定是变速运动

B.曲线运动速度的方向不断地变化。但速度的大小可以不变

C.曲线运动的速度方向可能不变

D.曲线运动的速度大小和方向一定同时改变

2.对曲线运动中的速度的方向,下列说法正确的是„„„„„„„(

)

A.在曲线运动中,质点在任一位置的速度方向总是与这点的切线方向相同

B.在曲线运动中,质点的速度方向有时也不一定是沿着轨迹的切线方向

C.旋转雨伞时.伞面上的水滴由内向外做螺旋运动,故水滴速度方向不是沿其切线方向的

D.旋转雨伞时,伞面上的水滴由内向外做螺旋运动,水滴速度方向总是沿其轨道的切线方向

参考答案

1.A

解析:对于曲线运动来说,在运动的过程中,物体速度方向始终在变化,所以曲线运动一定是变速运动.在这个过程中.物体速度的大小是否发生变化,

并不影响曲线运动是变速运动.因此,速度大小可能变化,也可能不变.所以本题应该选择A

2.AD

解析:本题主要考查物体做曲线运动时的速度方向,解此题只要把握一点:不论在任何情况下,曲线运动速度方向总是与其轨道的切线方向一致的,所以本题应该选择AD

(二)、物体做曲线运动的条件

师:为什么有些物体做直线运动,有些物体做曲线运动呢?下面我们通过几

个实验来研究以下这个问题.

[实验与探究]

如图6.1—5所示的装置放在水平桌面上.在斜面顶端放置一钢球,放开手让钢球自由滚下,观察钢球在桌面上的运动情况,记住钢球的运动轨迹.

生:钢球做直线运动,速度逐渐减小.

师:请同学们来分析钢球在桌面上的受力情况. 生:钢球受竖直向下的重力,竖直向上的支持力,还受到滑动摩擦力的作用. 师:摩擦力的方向如何?

生:摩擦力的方向与运动方向在同一直线上,但与运动方向相反. (演示实验) 在刚才实验中,钢球的运动路径旁边放一块磁铁,重复刚才的实验操作,观察钢球在桌面上的运动情况.

生:钢球做曲线运动.

师:分析钢球在桌面上的受力情况.

生:钢球受竖直向下的重力,竖直向上的支持力,还受到方向与运动方向相反的滑动摩擦力的作用,此外还受到磁铁的吸引力.

师:引力的方向如何? 生:引力的方向随着钢球的运动不断改变,但总是不与运动方向在同一直线上.

(演示实验) 把上次实验用的钢球改为同等大小的木球重复上次实验.观察木球运动情况.

生:木球做直线运动,速度不断减小. 师:分析木球在桌面上的受力情况.

生:木球受竖直向下的重力、竖直向上的支持力,还受到方向与运动方向相反的滑动摩擦力的作用.木球并不受到磁铁给它的吸引力.

(演示实验)

随手抛出一个粉笔头,观察粉笔头的运动状态.

生:粉笔头做曲线运动.

师:分析粉笔头的受力情况.

生:受竖直向下的重力的作用.

师:在以上几个实验中,第一个钢球只受到与运动方向在同一条直线上与运动方向垂直的力的作用,做的是直线运动,木球同样也受到这样的力的作用,也是做直线运动,而第二个钢球受到一个与运动方向成一定夹角的力的作用,做的是曲线运动;粉笔头受的重力与它的运动方向也不在同一条直线上,粉笔头做曲线运动.由此我们可以得出什么样的情况下物体会做曲线运动? 生:当物体受到与运动方向不在同一条直线上的力的作用时,会做曲线运动. 师:现在大家来看这样一道题.如图6.1—6所示,光滑水平桌面上放置质量为m的物体,受到与水平方向成α角斜向上的力的作用,分析该物体的运动情况.

生:物体做匀加速直线运动. 师:物体的受力情况是怎样的? 生:受竖直向下的重力、竖直向上的支持力以及拉力. 师:拉力与运动方向有什么关系? 生:与运动方向有一定角度.

师:刚才我们总结说:当物体受到与运动方向成一定角度的力的作用时,物体会做曲线运动,而在这个实验中,物体受的力与运动方向成α角,但物体并没有做曲线运动,这是什么原因呢? 生:对于钢球来说,它不仅受到与运动方向成一定角度的力的作用.而且它所受到的合外力的方向也与运动方向成一定角度,钢球做曲线运动;对于粉笔头来说,它所受到的重力就是它受到的合外力,与运动方向成一定角度,粉笔头做曲线运动;对于刚才实验中的物体来说,虽然它所受到的拉力与运动方向成一定角度,但物体所受的合外力仍然与运动方向在同一直线上,所以该物体并没有做曲线运动.

师:那我们该如何总结物体做曲线运动的条件呢? 生:当物体所受的合力方向跟它的速度方向不在同一直线上时.物体将做曲线运动.

[交流与讨论]

1.飞机扔炸弹,分析为什么炸弹做曲线运动?

2.我们骑摩托车或自行车通过弯道时,我们侧身骑,为什么?

3.盘山公路路面有何特点?火车铁轨在弯道有何特点?

参考解答

1.炸弹离开飞机后由于惯性,具有与飞机同样的水平初速度,且受重力,初速度与重力方向有一定角度,所以做曲线运动.

2.骑摩托车或自行车通过弯道时,我们和车一起做曲线运动,这个时候人和车这个整体需要一个与运动方向成一定夹角的力来完成这个曲线运动,我们侧身正是为了提供这个力.

3.盘山公路的路面并不是水平的,而是一边高一边低;火车铁轨在弯道的时候两根铁轨并不是一般高的,而是一个高一个低.之所以这样设计,正是因为各种车辆爬盘山公路的时候做的都是曲线运动,火车拐弯时也是曲线运动,这些

曲线运动都需要一个与运动方向成一定夹角的力来完成.盘山公路和火车铁轨的这种设计就是为提供这个力服务的. [小结] 1.运动轨迹是曲线的运动叫曲线运动. 2.曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上.

3.当合外力F的方向与它的速度方向不在一条直线上时,物体做曲线运动.

作 业 [布置作业]

教材第34页“问题与练习”1,2,3.

七、板 书 设 计

§6.1 曲线运动 (

一、)曲线运动

定义:运动轨迹是曲线的运动叫做曲线运动.

二、)物体做曲线运动的条件

当物体所受的合力方向跟它的逮度方向不在同一直线上时,物体将做曲线运动.

三、)曲线运动速度的方向

质点在某一点的速度,沿曲线在这一点的切线方向. (

四、)曲线运动的性质

曲线运动过程中速度方向始终在变化,因此曲线运动是变速运动.

八、教学反思

与过去的教材相对照,尽管本书仍从砂轮落下微粒的运动入手,开始讨论曲线运动的方向。但是,又有很大不同。过去是由课本描述现象,同时直接说出结论,本书则在学习的开始提出问题,书本不予解答,请学生考虑由现象应该得出的结论。这类“思考与讨论”、“说一说”等,都是为便于学生自主学习所创造的条件,符合新课程的教学理念和教学目标。

推荐第3篇:第五章《曲线运动》教学设计

第五章

曲线运动

5.1 曲线运动(3课时)

三维教学目标

1、知识与技能

(l)知道曲线运动中速度的方向,理解曲线运动是一种变速运动;

(2)知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上。

2、过程与方法

(1)体验曲线运动与直线运动的区别;

(2)体验曲线运动是变速运动及它的建度方向的变化。

3、情感、态度与价值观

(1)能领略曲线运动的奇妙与和谐,发展对科学的好奇心与求知欲; (2)有参与科技活动的热情,将物理知识应用于生活和生产实践中。

教学重点:什么是曲线运动;物体做曲线运动的方向的确定;物体做曲线运动的条件。 教学难点:物体微曲线运动的条件。 教学方法:探究、讲授、讨论、练习

教具准备:投影仪、投影片、斜面、小钢球、小木球、条形磁铁。 教学过程:

第一节

曲线运动

(一)新课导入

前面我们学习过了各种直线运动,包括匀速直线运动、匀变速直线运动、自由落体运动等。下面来看这个小实验,判断该物体的运动状态。

实验:(1)演示自由落体运动,该运动的特征是什么?(轨迹是直线)

(2)演示平抛运动,该运动的特征是什么?(轨迹是曲线)

这里我们看到一种我们前面没有学过的运动形式,它与我们前面学过的运动形式有本质的区别。前面我们学过的运动的轨迹都是直线,而我们现在看到的这种运动的轨迹是曲线,我们把这种运动称为曲线运动。

概念:轨迹是曲线的运动叫曲线运动。其实曲线运动是比直线运动普遍的运动情形,现在请大家举出一些生活中的曲线运动的例子?(微观世界里如电子绕原子核旋转;宏观世界里如天体运行;生活中如投标抢、掷铁饼、跳高、既远等均为曲线运动)

(二)新课教学

1、曲线运动速度的方向

在前面学习直线运动的时候我们已经知道了任何确定的直线运动都有确定的速度方向,这个方向与物体的运动方向相同,现在我们又学习了曲线运动,大家想一想我们该如何确定曲线运动的速度方向?在解决这个问题之前我们先来看几张图片(如图6.1—l、6.1—2)。

观察图中所描述的现象,你能不能说清楚,砂轮打磨下来的炽热的微粒。飞出去的链球,它们沿着什么方向运动?

射出的火星是砂乾与刀具磨擦出的微粒,由于惯性,以脱离砂轮时的速度沿切线方向飞出,切线方向即为火星飞出时的速度方向。对于链球也是同样的道理,它们也会沿着脱离点的切线方向飞出。

刚才的几个物体的运动轨迹都是圈,我们总结曲线运动的方向沿着切线方向,但对于一般的曲线运动是不是也是这样呢?下面我们来做个实验看一看,一般的曲线运动是什么情况。 (演示实验)

在匀变速运动中,速度大小发生变化,我们说这是变速运动,而在曲线运动中,速度方向时刻在改变,我们也说它是变速运动。

实际上这个过程我们可以这样来理解:速度是矢量+速度方向变化,速度矢量就发生了变化→具有加速度→曲线运动是变速运动。 (2)物体做曲线运动的条件

演示实验:在刚才实验中,钢球的运动路径旁边放一块磁铁,重复刚才的实验操作,观察钢球在桌面上的运动情况?

(钢球傲曲线运动)

分析钢球在桌面上的受力情况?(钢球受竖直向下的重力,竖直向上的支持力,还受到方向与运动方向相反的滑动摩擦力的作用,此外还受到磁铁的吸引力。)

引力的方向如何?(引力的方向随着钢球的运动不断改变,但总是不与运动方向在同一直线上。) 演示实验:把上次实验用的钢球改为同等大小的木球重复上次实验,观察木球运动情况?(木球做直线运动,速度不断减小。)

分析木球在桌面上的受力情况?(木球受竖直向下的重力、竖直向上的支持力,还受到方向与运动方向相反的滑动摩擦力的作用,木球并不受到磁铁给它的吸引力。)

演示实验:随手抛出一个粉笔头,观察粉笔头的运动状态?(粉笔头做曲线运动)

结论:当物体所受的合力方向跟它的速度方向不在同一直线上时,物体将做曲线运动。

3、交流与讨论

(1)飞机扔炸弹,分析为什么炸弹做曲线运动?

(2)我们骑摩托车或自行车通过弯道时,我们侧身骑,为什么? (3)盘山公路路面有何特点?火车铁轨在弯道有何特点?

4、小结:

(1)运动轨迹是曲线的运动叫曲线运动。

(2)曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。 (3)当合外力F的方向与它的速度方向有一夹角时,物体做曲线运动。

板书设计:

5.1 曲线运动

1、曲线运动

定义:运动轨迹是曲线的运动叫做曲线运动。

2、物体做曲线运动的条件

当物体所受的合力方向跟它的逮度方向不在同一直线上时,物体将做曲线运动。

3、曲线运动速度的方向

质点在某一点的速度,沿曲线在这一点的切线方向。

4、曲线运动的性质

曲线运动过程中速度方向始终在变化,因此曲线运动是变速运动。

5.2平抛运动(2课时)

三维教学目标

1、知识与技能

(1)在具体情景中,知道合运动、分运动分别是什么,知道其同时性和独立性; (2)知道运动的合成与分解,理解运动的合成与分解遵循平行四边形定则; (3)会用作图和计算的方法,求解位移和速度的合成与分解问题。

2、过程与方法

(1)通过对抛体运动的观察和思考,了解一个运动可以与几个不同的运动效果相同,体会等效替代的方法; (2)通过观察和思考演示实验,知道运动独立性.学习化繁为筒的研究方法; (3)掌握用平行四边形定则处理简单的矢量运算问题。

3、情感、态度与价值观

(1)通过观察,培养观察能力;

(2)通过讨论与交流,培养勇于表达的习惯和用科学语言严谨表达的能力。

教学重点

(1)明确一个复杂的运动可以等效为两个简单的运动的合成或等效分解为两个简单的运动; (2)理解运动合成、分解的意义和方法。

教学难点:分运动和合运动的等时性和独立性;应用运动的合成和分解方法分析解决实际问题。 教学方法:探究、讲授、讨论、练习教学用具:演示红蜡烛运动的有关装置。 教学过程:

第二节

平抛运动

(一)新课导入

上节课我们学习了曲线运动的定义,性质及物体做曲线运动的条件,先来回顾一下这几个问题:什么是曲线运动?(运动轨迹是曲线的运动是曲线运动。)

怎样确定做曲线运动的物体在某一时刻的速度方向?(质点在某一点的速度方向沿曲线在这一点的切线方向。)

物体在什么情况下做曲线运动?(当物体所受合力的方向跟它的速度方向不在同一直线上时,物体做曲线运动。)

通过上节课的学习,我们对曲线运动有了一个大致的认识,但我们还投有对曲线运动进行深入的研究,要研究曲线运动需要什么样的方法呢?这节课我们就来研究这个问题。

(二)新课教学

我们先来回想一下我们是怎样研究直线运动的,同学们可以从如何确定质点运动的位移来考虑。 可以沿着物体或质点运动的轨迹建立直线坐标系,通过物体或质点坐标的变化可以确定其位移,从而达到研究物体运动过程的目的。

下面我们就来探究一下怎样应用运动的合成与分解来研究曲线运动。

演示实验:如图6.2—l所示,在一端封闭、长约l m的玻璃管内注满清水,水中放一红蜡做的小圆柱体R,将玻璃管的开口端用胶塞塞紧。(图甲)

将这个玻璃管倒置(图乙),蜡块R就沿玻璃管上,如果旁边放一个米尺,可以看到蜡块上升的速度大致不变,即蜡块做匀连直线运动。

再次将玻璃管上下颠倒,在蜡块上升的同时将玻璃管水平向右匀速移动,观察蜡块的运动。(图丙)

1、蜡块的位置

蜡块在两个方向上做的都是匀速直线运动,所以x、y可以通过匀速直线运动的位移公式x=vt获得,即:

x=vxt

y=vyt

2、蜡块的运动轨迹

我们可以先从公式(1)中解出t t=x/vx

y=vy x/vx

现在我们对公式④进行数学分析,看看它究竟代表的是一条什么样的曲线呢?

由于蜡块在x、y两个方向上做的都是匀速直线运动,所以vy、vx都是常量.所以vy /vx也是常量,可见公式④表示的是一条过原点的倾斜直线。

3、蜡块的位移

在坐标系中,线段OP的长度就代表了物体位移的大小。现在我找一位同学来计算一下这个长度。

因为坐标系中的曲线就代表了物体运动的轨迹,所以我们只要求出该直线与x轴的夹角θ就可以了。要求"我们只要求出它的正切就可以了。

tanθ==vy /vx

这样就可以求出θ,从而得知位移的方向。

4、交流与探究

现在我们探讨了蜡块在玻璃管中的运动,请大家考虑实际生活中我们遇到的哪些物体的运动过程与蜡块相似?典型事例:小船过河,

5、蜡块的速度

根据我们前面学过的速度的定义,物体在某过程中的速度等于该过程的位移除以发生这段位移所需要的时间,即前面我们已经求出了蜡块在任意时刻的位移的大小

所以我们可以直接计算蜡块的位移,直接套入速度公式我们可以得到什么样的速度表达式?带人公式可得:

分析这个公式我们可以得到什么样的结论?

vy /vx都是常量,生变化的,即蜡块做的是匀速运动。

我们就可以得出运动合成与分解的概念了:

也是常量。也就是说蜡块的速度是不发由分运动求合运动的过程叫做运动的合成; 由合运动求分运动的过程叫做运动的分解。 思考与讨论

如果物体在一个方向上的分运动是匀速直线运动,在与它垂直方向的分运动是匀加速直线运动。合运动的轨迹是什么样的?(参考提示:匀速运动的速度V1和匀速运动的初速度的合速度应如图6.2—3所示,而加速度a与v2同向,则a与v合必有夹角,因此轨迹为曲线。)

下面我们来看一个通过运动的合成与分解解决实际问题的例子。 课堂训练

(1)关于运动的合成,下列说法中正确的是„„„„„„„„„„„„„(

) A.合运动的速度一定比每一个分运动的速度大 B.两个匀速直线运动的合运动,一定是匀速直线运动 C.两个分运动是直线运动的合运动,一定是直线运动 D.两个分运动的时间,一定与它们的合运动的时间相等

(2)如果两个分运动的速度大小相等.且为定值,则以下说法中正确的是„„(

) A.两个分运动夹角为零,合速度最大

B.两个分运动夹角为90°,合速度大小与分速度大小相等 C.合速度大小随分运动的夹角的增大而减小

D.两个分运动夹角大于120°,合速度的大小等于分速度

(3)小船在静水中的速度是v,今小船要渡过一河流,渡河时小船朝对岸垂直划行,若航行至中心时,水流速度突然增大,则渡河时间将„„„„„„„„„(

) A.增大

B.减小

C.不变

D.无法确定

小结:这节课我们学习的主要内容是探究曲线运动的基本方法——运动的合成与分解。这种方法在应用过程中遵循平行四边形定则,在实际的解题过程中,通常选择实际看到的运动为合运动,其他的运动为分运动。

运动的合成与分解包括以下几方面的内容:速度的合成与分解;位移的合成与分解;加速度的合成与分解。

合运动与分运动之间还存在如下的特点:独立性原理:各个分运动之间相互独立,互不影响。等时性原理,合运动与分运动总是同时开始,同时结束,它们所经历的时间是相等的。

板书设计:

5.3实验:研究平抛运动(3课时)

三维教学目标

1、知识与技能

(1)理解平抛运动是匀变速运动,其加速度为g; (2)掌握抛体运动的位置与速度的关系。

2、过程与方法

(1)掌握平抛运动的特点,能够运用平抛规律解决有关问题; (2)通过例题分析再次体会平抛运动的规律。

3、情感、态度与价值观

(1)有参与实验总结规律的热情,从而能更方便地解决实际问题; (2)通过实践,巩固自己所学的知识。 教学重点:分析归纳抛体运动的规律。

教学难点:应用数学知识分析归纳抛体运动的规律。 教学方法:探究、讲授、讨论、练习教具准备:平抛运动演示仪、自制投影片

教学过程:

第三节

实验:研究平抛运动

(一)新课导入

上一节我们已经通过实验探究出平抛运动在竖直方向和水平方向上的运动规律,对平抛运动的特点有了感性认识。这一节我们将从理论上对抛体运动的规律作进一步分析,学习和体会在水平面上应用牛顿定律的方法,并通过应用此方法去分析没有感性认识的抛体运动的规律。

(二)新课教学

1、抛体的位置

我们以平抛运动为例来研究抛体运动所共同具有的性质。

首先我们来研究初速度为v的平抛运动的位置随时间变化的规律。用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动,我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬间开始计时。

在抛出后的运动过程中,小球受力情况如何?(小球只受重力,重力的方向竖直向下,水平方向不受力。)

那么,小球在水平方向有加速度吗,它将怎样运动?(小球在水平方向没有加速度,水平方向的分速度将保持v不变,做匀速直线运动。)

那么,小球的运动就可以看成是水平和竖直两个方向上运动的合成。t时间内小球合位移是:

若设s与+x方向(即速度方向)的夹角为θ,如图6.4—1,则其正切值如何求?

2、抛体的速度

由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间?

这说明了什么问题?(这说明了平抛运动的水平位移不仅与初速度有关系,还与物体的下落高度有关)利用运动合成的知识,结合图6.4—2,求物体落地速度是多大?结论如何?

平抛运动常分解成水平方向和竖直方向的两个分运动来处理,由于竖直分运动是初速度为零的匀加速直线运动,所以初速度为零的匀加速直线运动的公式和特点均可以在此应用。另外,有时候根据具体情况也可以将平抛运动沿其他方向分解。

3、斜抛运动

如果物体抛出时的速度不是沿水平方向,而是斜向上方或斜向下方的(这种情况称为斜抛),它的受力情况是什么样的?加速度又如何?(它的受力情况与平抛完全相同,即在水平方向仍不受力,加速度仍是0;在竖直方向仍只受重力,加速度仍为g)

实际上物体以初速度v沿斜向上或斜向下方抛出,物体只在重力作用下的运动,如何表示?与平抛是否相同?(斜抛运动沿水平方向和竖直方向初速度与平抛不同,分别是vx=vcosθ和vy=sinθ)

由于物体运动过程中只受重力,所以水平方向速度vx=vcosθ保持不变,做匀速直线运动;而竖直方向上因受重力作用,有竖直向下的重力加速度J,同时有竖直向上的初速度vy=sinθ,因此做匀减速运动(是竖直上抛运动,当初速度向斜下方,竖直方向的分运动为竖直下抛运动),当速度减小到。时物体上升到最高点,此时物体由于还受到重力,所以仍有一个向下的加速度g,将开始做竖直向下的加速运动。因此,斜抛运动可以看成是水平方向速度为vx=vcosθ的匀速直线运动和竖直方向初速度为vy=sinθ的竖直上抛或竖直下抛运动的合运动。

斜抛运动分斜上抛和斜下抛(由初速度方向确定)两种,下面以斜上抛运动为例讨论:

斜抛运动的特点是什么?(特点:加速度a=g,方向竖直向下,初速度方向与水平方向成一夹角θ斜向上,θ=90°时为竖直上抛或竖直下抛运动θ=0°时为平抛运动)

常见的处理方法:

第一、将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,这样有由此可以得到哪些特点?

由此可得如下特点:a.斜向上运动的时间与斜向下运动的时间相等;b.从轨道最高点将斜抛运动分为前后两段具有对称性,如同一高度上的两点,速度大小相等,速度方向与水平线的夹角相同。

第二、将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解。

第三、将沿斜面和垂直斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题。

交流与讨论

对于斜抛运动我们只介绍下船上抛和斜下抛的研究方法,除了平抛、斜上抛、斜下抛外,抛体运动还包括竖直上抛和竖直下抛,请大家根据我们研究前面几种抛体运动的方法来研究一下竖直上抛和竖直下抛。

参考解答:对于这两种运动来说,它们都是直线运动,但这并不影响用运动的合成与分解的方法来研究它们。这个过程我们可以仿照第一节中我们介绍的匀加速运动的分解过程,对竖直上抛运动,设它的初速度为v0,那么它的速度就可以写成v= v0—gt的形式,位移写成x= v0t—g t2/2的形式。那这样我们就可以进行分解了。把速度写成v1= v0,v2=—gt的形式,把位移写成xl= v0t,x2= —g t2/2的形式,这样我们可以看到,竖直上抛运动被分解成了一个竖直向上的匀速直线运动和一个竖直向上的匀减速运动。对于竖直下抛运动可以采取同样的方法进行处理。 小结:

(1)具有水平速度的物体,只受重力作用时,形成平抛运动。

(2)平抛运动可分解为水平匀蓬运动和竖直自由落体运动.平抛位移等于水平位移和竖直位移的矢量和;平抛瞬时速度等于水平速度和竖直速度的矢量和。 (3)平抛运动是一种匀变速曲线运动。

(4)如果物体受到恒定合外力作用,并且合外力跟初速度垂直,形成类似平抛的匀变速曲线运动,只需把公式中的g换成a,其中a=F合/m.

说明:

(1)干抛运动是学生接触到的第一个曲线运动,弄清其成固是基础,水平初速度的获得是同题的关键,可归纳众两种;第

一、物体被水平加速:水平抛出、水干射出、水平冲击等;第

二、物体与原来水平运动的载体脱离,由于惯性而保持原来的水平速度。

(2)平抛运动的位移公式和速度公式中有三个含有时间t,应根据不同的已知条件来求时间。但应明确:平抛运动的时间完全由抛出点到落地点的竖直高度确定(在不高的范国内g恒定),与抛出的速度无关。

第四节 圆周运动(3课时)

三维教学目标

1、知识与技能

(1)认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算;

(2)理解线速度、角速度、周期之间的关系:v=rω=2πr/T; (3)理解匀速圆周运动是变速运动。

2、过程与方法

(1)运用极限法理解线速度的瞬时性.掌握运用圆周运动的特点如何去分析有关问题; (2)体会有了线速度后.为什么还要引入角速度.运用数学知识推导角速度的单位。

3、情感、态度与价值观

(1)通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点; (2)体会应用知识的乐趣.激发学习的兴趣。

教学重点:线速度、角速度、周期的概念及引入的过程,掌握它们之间的联系。 教学难点:理解线速度、角速度的物理意义及概念引入的必要性。 教学方法:探究、讲授、讨论、练习

教具准备:多媒体教学课件;用细线拴住的小球;实物投影仪。 教学过程:

(一)新课导入

请同学观看两个物体所做的曲线运动,并请注意观察它们的运动特点:

第一个:老师用事先准备好的用细线拴住的小球,演示水平面内的圆周运动;

第二个:课件展示同学们熟悉的手表指针的走动.(它们的轨迹是一个圆)这就是我们今天要研究的圆周运动。

(二)新课教学

行驶中的汽车轮子,公园里的“大转轮”,自行车上的各个转动部分。日常生活和生产实践中做圆周运动的物体可以说是“举不胜举”。同学们所列举的这些做圆周运动物体上的质点,哪些运动得较慢?哪些运动得更快?我们应该如何比较它们运动的快慢呢?下面就请同学们对自行车上的各个转动部分,围绕课本 “思考与讨论”中提出的问题,前后每四人一组进行讨论。 交流与讨论

开始讨论时,学生之间有激烈的争论,各人考虑的出发点不一样,思考的角度不同。有人认为小齿轮、后轮上各点运动的快慢一样,因为它们是一起转动的;有人认为大齿轮、小齿轮各点运动的快慢一样,因为它们是用链条连在一起转动的,等等。这时需要老师的引导,你衡量快慢的标准是什么?你从哪个角度去进行比较的?

引导学生过渡到对描述圆周运动快慢的物理量——线速度的学习上来。

1、线速度

我们曾经用速度这个概念来描述物体做直线运动时的快慢,那么我们能否继续用这个概念来描述圆周运动的快慢呢?如果能,该怎样定义?下面就请同学们自主学习课本第45页上有关线速度的内容:给出阅读提纲,学生先归纳,然后师生互动加深学习。阅读提纲:

线速度的物理意义?

线速度的定义(和直线运动中速度定义的比较)?

线速度的定义式?

线速度的瞬时性/ 自主阅读,积极思考,然后每四人一组进行讨论、交流,形成共识。线速度的物理意义反映了质点在单位时间内通过的弧长的多少。线速度是利用物体通过的弧长与所用时间的比值来定义的。线速度也是矢量,其运动过程中方向在不断变化着,因此要注意其瞬时性。匀速圆周运动的“匀速”,不是真正的匀速,而是指速度的大小不变„„

结论:匀速圆周运动是一种变速运动。

2、角速度

教师出示课件展示手表指针的转动,提出问题:

根据线速度的定义,请你比较手表指针中点和端点线速度的大小?

同一根指针上不同的点,其线速度大小却不一样,而它们是应该有共同点的。因此这就需要我们去思考:描述圆周运动的快慢,除了用线速度外,还有没有其他方法?阅读提纲:

角速度的物理意义? 角速度的定义? 角速度的定义式?

角速度能把同一物体上各点做圆周运动的共同点反映出来。角速度大反映了物体转动的快慢„„ 总结:

(1)物理意义:描述质点转过的圆心角的快慢.

(2)定义:在匀速圆周运动中.连接运动质点和圆心的半径转过△θ的角度跟所用时间△t的比值,就是质点运动的角速度. (3)定义式:ω=△θ/△t

3、角速度的单位

每接触一个新的物理量,我们都要关心它的物理单位是什么,那么线建度的单位是米/秒,角速度的单位又是什么呢?下面就请同学们自主学习课本第46页上有关角速度的内容,课件投影出阅读提纲; 怎样度量圆心角的大小?弧度这个单位是如何得到的?在计算时要注童什么? 国际单位制中,角速度的单位是什么?

有人说,匀速圆周运动是线速度不变的运动,也是角速度不变的运动,这两种说法正确吗?为什么? 总结:

(1)圆心角θ的大小可以用弧长和半径的比值来描述,这个比值是没有单位的,为了描述问题的方便,我们“给”这个比值一个单位,这就是弧度。弧度不是通常煮义上的单位。计算时,不能将弧度带进算式中。 (2)国际单位制中,角速度的单位是弧度/秒(rad/s)。

(3)这一句话是错误的,因为线速度是矢量,其方向在不断变化,匀速圆周运动是线速度大小不变的运动,后一句话是正确的,因为角速度是不变的(如果有学生提出角速度是矢量吗?教师可明确说是矢量,但高中阶段不研究其方向,而不能违背科学说角速度是标量)。

教材中还提到了描述圆周运动快慢的两种方法,它们是什么?单位如何?阅读教材第46页的有关内容,掌握转速和周期的概念。

4、线速度与角速度的关系

线速度和角速度都能描述圆周运动的快慢,它们之间有何关系呢?下面请同学们依据刚学过的线速度和角速度的概念和定义,推导出线速度和角速度的关系v=rω

点评:通过推导,加深对所学知识的理解,掌握知识间的联系.到此,教师还需引导学生进一步思考;以上都能描述圆周运动快慢的线速度、角速度、转速和周期,除了有以上的联系外,还有没有不同的地方?如果学生通过讨论发现周期这一概念更能突显出圆周运动的周期性和重复性,将使学生对圆周运动有进一步的认识。

板书设计:

第四节

圆周运动

1、描述匀速圆周运动的有关物理量

(1)线速度

1.定义:做圆周运动的物体通过的弧长与所用时间的比值 2.公式:v=△l/△t单位:m/s(s是弧长.非位移) 3.物理意义: (2)角速度

1.定义:做圆周运动的物体的半径扫过的角度与所用时间的比值 2.公式:ω=△θ/△t. 3.单位:rad/s 4.物理意义: (3)转速和周期

2、线速度,角速度、周期间的关系

v=rω=2πr/T

ω=2π/T

5.5向心加速度(2课时)

三维教学目标

1、知识与技能

(1)理解速度变化量和向心加速度的概念; (2)知道向心加速度和线速度、角速度的关系式; (3)能够运用向心加速度公式求解有关问题。

2、过程与方法:体会速度变化量的处理特点,体验向心加速度的导出过程,领会推导过程中用到的数学方法,教师启发、引导,学生自主阅读、思考、讨论、交流学习成果。

3、情感、与价值观:培养学生思维能力和分析问题的能力,培养学生探究问题的热情,乐于学习的品质。特别是“做一做”的实施,要通过教师的引导让学生体会成功的喜悦。

教学重点:理解匀速圆周运动中加速度的产生原因,掌握向心加速度的确定方法和计算公式。 教学难点:向心加速度方向的确定过程和向心加速度公式的推导与应用。 教学方法:探究、讲授、讨论、练习教具准备:多媒体辅助教学设备等

教学过程:

第五节

向心加速度

(一)新课导入

通过前面的学习,我们已经知道,做曲线运动的物体速度一定是变化的。即使是我们上一堂课研究的匀速圆周运动,其方向仍在不断变化着。换句话说,做曲线运动的物体,一定有加速度。圆周运动是曲线运动,那么做圆周运动的物体,加速度的大小和方向如何确定呢?——这就是我们今天要研究的课题。

(二)新课教学

1、感知加速度的方向

请同学们看两例:(展示多媒体动态投影图6.6—1和图6.6—2)并提出问题。

(1)图6.6—1中的地球受到什么力的作用?这个力可能沿什么方向?(感觉上应该受到指向太阳的引力作用)

(2)图6.6—2中的小球受到几个力的作用?这几个力的合力沿什么方向?(小球受到重力、支持力和绳子的拉力三个力的作用,其合力即为绳子的拉力,其方向指向圆心。)

可能有些同学有疑惑,即我们这节课要研究的是匀逮圆周运动的加速度,可是上两个例题却在研究物体所受的力,这不是“南辕北辙”了吗?(根据牛顿第二定律可知,知道了物体所受的合外力,就可以知道物体的加速度,可能是通过力来研究加速度吧。)

我们之前没有研究过曲线运动的加速度问题,特别是加速度的方向较难理解,而牛顿第二定律告诉我们,物体的加速度方向总是和它的受力方向一致,这个关系不仅对直线运动正确,对曲线运动也同样正确。所以先通过研究力来感知加速度,特别是加速度的方向。但我们具体研究时仍要根据加速度的定义来进行,为了进一步增加感性认识,请同学们再举出几个类似的做圆周运动的实例,并就刚才讨论的类似问题进行说明。

做匀速圆周运动的物体所受的力或合外力指向圆心,所以物体的加速度也指向圆心,是不是由此可以得出结论:“任何物体做匀速圆周运动的加速度都指向圆心”?暂时不能,因为上面只研究了有限的实例,还难以得出一般性的结论。然而,这样的研究十分有益,因为它强烈地向我们提示了问题的答案,给我们指出了方向。

下面我们将对圆周运动的加速度方向作一般性的讨论。

2、速度变化量

请同学们阅读教材“速度变化量”部分,同时在练习本上画出物体加速运动和减速运动时速度变化量△v的图示,思考并回答问题:速度的变化量△v是矢量还是标量? 如果初速度v1和末速度v2不在同一直线上,如何表示速度的变化量△v?

认真阅读教材,思考问题,在练习本上画出物体加速运动和减速运动时速度变化量的图示。每小组4人进行交流和讨论:如果初速度v1和末速度v2不在同一直线上,如何表示速度的变化量△v?

3、向心加速度

请同学们阅读教材“向心加速度”部分,分析投影图6.6—6.并思考以下问题: 结论:当△t很小很小时,△v指向圆心。

上面的推导不涉及“地球公转“小球绕图钉转动”等具体的运动,结论具有一般性:做匀速圆周运动的物体加速度指向圆心,这个加速度称为向心加速度。匀速圆周运动的加速度方向明确了,它的大小与什么因素有关呢?下面请大家按照课本第5l页“做一做”栏目中的提示,在练习本上推导出向心加速度的表达式。也就是下面这两个表达式:aN=v2/r , aN=rω

2思考与讨论:引导学生思考并完成课本第5l页“思考与讨论”栏目中提出的问题,可将同一观点的学生编为一组,不同组之间进行辩论,深化本节课所学的内容。

板书设计:

第五节

向心加速度

1、感知做匀速圆周运动的物体加速度的方向

2、速度变化量的求法

3、向心加速度

(1)名称的由来

(2)表达式:aN=v2/r , aN=rω

2(3)对两种表达式的比较、分析

5.6向心力(3课时)

三维教学目标

1、知识与技能

(1)理解向心力的概念及其表达式的确切含义;

(2)知道向心力大小与哪些因素有关,并能用来进行计算;

(3)知道在变速圆周运动中,可用上述公式求质点在某一点的向心力和向心加速度。

2、过程与方法

(1)通过用圆锥摆粗略验证向心力的表达式的实验来了解向心力的大小与哪些因素有关,并具体“做一做”来理解公式的含义。

(2)进一步体会力是产生加速度的原因,并通过牛顿第二定律来理解匀速圆周运动、变速圆周运动及一般曲线运动的各自特点。

3、情感、态度与价值观

(1)在实验中,培养学生动手的习惯并提高分析问题、解决问题的能力。 (2)感受成功的快乐,体会实验的意义,激发学习物理的兴趣。

教学重点:体会牛顿第二定律在向心力上的应用;明确向心力的意义、作用、公式及其变形。

教学难点:圆锥摆实验及有关物理量的测量;如何运用向心力、向心加速度的知识解释有关现象。 教学方法:探究、讲授、讨论、练习

教具准备:多媒体课件、圆锥摆等实验设备 教学过程:

第六节

向心力

(一)新课导入

前面两节课,我们学习、研究了圆周运动的运动学特征,知道了如何描述圆周运动,这节课我们再来学习物体做圆周运动的动力学特征——向心力。

(二)新课教学

1、向心力

请同学们阅读教材“向心力”部分,思考并回答以下问题:

(1)举出几个物体做圆周运动的实例,说明这些物体为什么不沿直线飞去。 (2)用牛顿第二定律推导出匀速圆周运动的向心力表达式。

认真阅读教材,列举并分析实例,体会向心力的作用效果,并根据牛顿第二定律推导出匀速圆周运动的向心力表达式。 交流与讨论

请同学们交流各自的阅读心得并进行相互间的讨论。

圆周运动是变速运动,有加速度,故做圆周运动的物体一定受到力的作用,而我们知道做匀速圆周运动的物体具有向心加速度,根据牛顿第二定律,这个加速度一定是由于它受到了指向圆心的合力的作用,这个合力叫做向心力,下面请同学们把刚才由牛顿第二定律推出的向心力的表达式展示出来。

向心力表达式:FN=mv2/r , FN=mrω

2、实验:用圆锥摆粗略验证向心力的表达式

实验与探究:请同学们阅读教材“实验”部分,思考下面的问题: (1)实验器材有哪些?

(2)简述实验原理,怎样达到验证的目的?

(3)实验过程中要注意什么?如何保证小球在水平面内做稳定的圆周运动,测量哪些物理量,记录哪些数据?

(4)实验过程中产生误差的原因主要有哪些?

认真阅读教材,思考问题,找学生代表发言,听取学生的见解,点评、总结。

交流与讨论:实验的过程中,多项测量都是粗略的,存在较大的误差,用两个方法得到的力并不严格相等。通过实验还体会到,向心力并不是像重力、弹力、摩擦力那样具有某种性质的力来命名的,它是效果力,是按力的效果名的,在圆锥摆实验中,向心力是小球重力和细线拉力的合力,还可以理解为是细线拉力在水平面内的一个分力。

我有一个改进的实验,其装置如图6.7—1所示,让小球在刚好要离开锥面的情况下做匀速圆周运动,我认为利用该装置可以使测量值减少误差。

课堂训练

说明以下几个圆周运动的实例中向心力是由哪些力提供的?

(1)绳的一端拴一小球,手执另一端使小球在光滑水平面上做匀速圆周运动? (2)火星绕太阳运转的向心力是什么力提供的?

(3)在圆盘上放一个小物块,使小物块随圆盘一起做匀速圆周运动,分析小物块受几个力,向心力由谁提供?

3、变速圆周运动和一般曲线运动

在刚才“做一做”的实验中,我们可以通过抡绳子来调节沙袋速度的大小,这就给我们带来一个疑问:难道向心力能改变速度的大小吗?为什么?(不能。因为我刚才做实验时发现,当我的手保持不动时,沙袋的速度并不能改变,只有当我的手在动时,沙袋的速度才能改变,所以不能。但具体细节我还没有搞清)

对于做一般曲线运动的物体,我们可以用怎样的分析方法进行简化处理?请同学们阅读教材并结合课本图6.7—4的提示发表自己的见解,同时再与刚才研究的变速圆周运动去进行对比。

板书设计:

第六节

向心力

1、向心力

(1)通过实例进一步感受做圆周运动的物体必须受到力的作用 (2)向心力的概念 (3)向心力的表达式

2、向心力的实验验证

(1)圆锥摆的实验

(2)向心力公式的实验讨论(“做一做”)

3、变速圆周运动和一般曲线运动的研究

5.7生活中的圆周运动(3课时)

三维教学目标

1、知识与技能

(1)知道如果一个力或几个力的合力的效果是使物体产生向心加速度,它就是圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源。

(2)能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例。

(3)知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。

2、过程与方法

(1)通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力。 (2)通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力。

(3)通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力。

3、情感、态度与价值观

(1)通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题。

(2)通过离心运动的应用和防止的实例分析.使学生明白事物都是一分为二的,要学会用一分为二的观点来看待问题。

(3)养成良好的思维表述习惯和科学的价值观。

教学重点:理解向心力是一种效果力;在具体问题中能找到是谁提供向心力的,并结合牛顿运动定律求解有关问题。

教学难点:具体问题中向心力的来源;关于对临界问题的讨论和分析;对变速圆周运动的理解和处理。 教学方法:探究、讲授、讨论、练习教具准备:多媒体课件 教学过程:

第七节

生活中的圆周运动

(一)新课导入

复习提问:请同学们回顾并叙述出对于圆周运动你已经理解和掌握了哪些基本知识?(用线速度、角速度、转速和周期等来描述做圆周运动物体的运动快慢;知道了圆周运动一定是变速运动,一定具有加速度;掌握了对于圆周运动的有关问题还必须通过运用牛顿第二定律去认真分析和处理。)

(二)新课教学

1、铁路的弯道

提出问题:火车受几个力作用?这几个力的关系如何?

火车受到4个力的作用,各为两对平衡力,即合外力为零。其中重力和支持力的合力为零,牵引力和摩擦力的合力为零,那火车转弯时情况会有何不同呢? 提出问题:

(1)转弯与直线前进有何不同?(2)画出受力示意图,并结合运动情况分析各力的关系?(转弯时火车的速度方向在不断变化,故其一定有加速度,其合外力一定不为零。)

转弯时合外力不为零,即需要提供向心力,而平直路前行不需要,那么火车转弯时是如何获得向心力的?进一步受力分析得:需增加的一个向心力(效果力),由铁轨外轨的轮缘和铁轨之间互相挤压而产生的弹力提供。

问题:挤压的后果会怎样?(由于火车质量、速度比较大,故所需向心力也很大。这样的话,轮缘和铁轨之间的挤压作用力将很大,导致的后果是铁轨容易损坏,轨缘也容易损坏。)

那么应该如何解决这一实际问题,结合学过的知识加以讨论,提出可行的解决方案,并画出受力图,加以定性说明。

交流与讨论:学生发挥自己的想象能力,结合知识点设计方案,结合受力图发表自己的见解„„ 如图6.8—l所示:

(火车受的重力和支持力的合力提供向心力,对内外轨都无挤压,这样就达到了保护铁轨的目的。)请同学们运用刚才的分析进一步讨论:实际的铁路上为什么转弯处的半径和火车运行速度有条件限制?

2、拱形桥

问题:质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径为只R,试画出受力分析图,分析汽车通过桥的最高点时对桥的压力?通过分析,你可以得出什么结论?

在最高点,对汽车进行受力分析,确定向心力的来源;由牛顿第二定律列出方程求出汽车受到的支持力:由牛顿第三定律求出桥面受到的压力:F’N=G—mv2/r

可见,汽车对桥的压力F’N小于汽车的重力G,并且压力随汽车速度的增大而减小。

例1:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,重力加速度g=10m/s2.求: (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以l0m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?

3、航天器中的失重现象

假设宇宙飞船质量为M,它在地球表面附近绕地球傲匀逮圆周运动,其轨道半径近似等于地球半径R,航天员质量为m,宇宙飞船和航天员受到的地球引力近似等于他们在地面上的重力,试求座舱对宇航员的支持力,此时飞船的速度多大?通过求解,你可以得出什么结论?(运用牛顿第二定律可解得:宇宙飞船的速度为Rg,再对宇航员进行分析可得,此时座椅对宇航员的支持力为零,即航天员处于失重状态。)

4、离心运动

做圆周运动的物体一旦失去向心力的作用,它会怎样运动呢?如果物体受的合力不足以提供向心力,它会怎样运动呢?发表你的见解并说明原因。(做圆周运动的物体一旦失去向心力的作用,它会沿切线飞出去,如体育中的“链球”运动,运动员手一放后,“链球”马上飞了出去。)

如果向心力突然消失,物体由于惯性,会沿切线方向飞出去。

如果物体受的合力不足以提供向心力,物体虽不能沿切线方向飞出去.但会逐渐远离圆心.这两种运动都叫做离心运动。

讨论与思考:请同学们结合生活实际,举出物体做离心运动的例子,在这些例子中,离心运动是有益的还是有害的?你能说出这些例子中离心运动是怎样发生的吗?

板书设计

第七节

生活中的圆周运动

1、铁路的弯道

(1)讨论向心力的来源:

(2)外轨高于内轨时重力与支持力的合力是使火车转弯的向心力 (3)讨论:为什么转弯处的半径和火车运行速度有条件限制?

2、拱形桥

(1)思考:汽车过拱形桥时,对桥面的压力与重力谁大? (2)圆周运动中的超重。失重情况。

3、航天器中的失重现象

4、离心运动

(1)离心现象的分析与讨论。 (2)离心运动的应用和防止。

推荐第4篇:1. 曲线运动 教学设计 教案

教学准备

1. 教学目标

知识与技能

1.知道曲线运动中速度的方向,理解曲线运动是一种变速运动. 2.知道物体做曲线运动的条件.

3.学会用作图法和直角三角形知识解决有关位移和速度的合成、分解问题. 过程与方法

1.学会分析日常生活中的曲线运动.

2.结合牛顿第二定律解释物体做曲线运动的条件.

3.通过红蜡块运动的实验,观察并分析在平面直角坐标系中研究物体的运动情况. 情感、态度与价值观

曲线运动是物体运动的普遍形式,注意观察身边不同物体的运动状态,思考产生不同运动的原因,体验分析实际问题的乐趣.2. 教学重点/难点

多媒体、板书

3. 教学用具 4. 标签

教学过程

一、曲线运动的位移

探究交流:图中做飞行表演的飞机正在螺旋上升,为了描述飞机的位移,选择平面直角坐标系可以吗?如果不可以,应该选择什么样的坐标系?

【提示】飞机不是在一个平面内运动,所以在平面直角坐标系中无法描述它的位移.描述飞机的位移需建立三维坐标系.1.基本知识 (1)曲线运动

质点运动的轨迹是曲线的运动. (2)建立坐标系

研究在同一平面内做曲线运动的物体的位移时,应选择平面直角坐标系. (3)描述

对于做曲线运动的物体,其位移应尽量用坐标轴方向的分矢量来表示. 2.思考判断

(1)人造卫星围绕地球的运动是曲线运动.(√) (2)研究风筝的运动时,可以选择平面直角坐标系.(×) (3)当物体运动到某点时,位移的分矢量可用该点的坐标来表示.(√)

二、曲线运动的速度 探究交流

在砂轮上磨刀具时,刀具与砂轮接触处的火星沿什么方向飞出?转动雨伞时,雨伞上的水滴沿什么方向飞出?由以上两种现象你能得出什么结论? 【提示】 火星将沿砂轮与刀具接触处的切线方向飞出,雨滴将沿伞边上各点所在圆周的切线方向飞出.由这两种现象可以看出,物体做曲线运动时,在某点时的速度方向应沿该点所在轨迹的切线方向.1.基本知识 (1)速度的方向

质点在某一点的速度,沿曲线在这一点的切线方向. (2)运动性质

做曲线运动的质点的速度的方向时刻发生变化,即速度时刻发生变化,因此曲线运动一定是变速运动.

(3)描述

用速度在相互垂直的两个方向的分矢量表示,这两个分矢量叫做分速度. 2.思考判断

(1)喷泉中斜射出的水流,其速度方向沿切线方向.(√) (2)曲线运动的速度可以不变.(×) (3)分速度是标量.(×) 3.曲线运动的速度特点

曲线运动速度的特点:一是速度时刻改变;二是速度方向总是沿切线方向.

(1)曲线运动中质点在某一时刻(或某一位置)的速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向.

(2)速度是一个矢量,既有大小,又有方向,假如在运动过程中只有速度大小的变化,而物体的速度方向不变,则物体只能做直线运动.因此,若物体做曲线运动,表明物体的速度方向发生了变化.

三.运动描述的实例 探究交流:在蜡块运动的描述中,如果只让玻璃管向右移动的速度变大,蜡块的速度如何变?

1.基本知识

(1)蜡块的位置(如图512所示) 蜡块沿玻璃管匀速上升的速度设为vy,玻璃管向右移动的速度设为vx.从蜡块开始运动的时刻计时,于是在时刻t,蜡块的位置P可以用它的x、y两个坐标表示,x=vxt,y=vyt.(2)蜡块的速度

四、物体做曲线运动的条件 1.基本知识

(1)当物体所受合力的方向跟它的速度方向不在同一直线上时,物体做曲线运动. (2)当物体加速度的方向与速度方向不在同一直线上时,物体做曲线运动. 2.思考判断

(1)物体做曲线运动时,合力一定是变力.(×) (2)物体做曲线运动时,合力一定不为零.(√) (3)物体做曲线运动时,加速度一定不为零.(√) 探究交流

你能总结出物体做直线运动的条件吗?

五、运动性质和轨迹的判断 【问题导思】

1.当物体所受合力变化时,加速度变化吗?

2.当物体所受合力与速度成锐角时,物体是加速运动,还是减速运动? 3.物体运动的轨迹如何判定?

1.物体所受合力为零或不受力时,将做匀速直线运动或静止. 2.物体所受合力不为零时,若合力方向与速度方向夹角为θ,则

3.物体运动性质和轨迹的判断方法

两个互成角度的直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定.

(1)根据合加速度是否恒定判定合运动是匀变速运动还是非匀变速运动,若合加速度不变且不为零,则合运动为匀变速运动;若合加速度变化,则为非匀变速运动.

(2)根据合加速度与合初速度是否共线判断合运动是直线运动还是曲线运动,若合加速度与合初速度在同一直线上,则合运动为直线运动,否则为曲线运动.

4.不在一条直线上的两个直线运动的合运动的几种可能情况 (1)两个匀速直线运动的合运动仍然是匀速直线运动.

(2)一个匀速直线运动与一个匀变速直线运动的合运动一定是匀变速曲线运动. (3)两个初速度为零的匀加速直线运动的合运动一定是匀加速直线运动,合运动的方向即两个加速度合成的方向.

(4)两个初速度不为零的匀变速直线运动的合运动可能是匀变速直线运动,也可能是匀变速曲线运动,当两个分运动的初速度的合速度方向与两个分运动的合加速度方向在同一直线上时,合运动为匀变速直线运动,否则为匀变速曲线运动.

5.曲线运动性质的判断方法

(1)看物体的合外力.若物体的合外力为恒力,则它做匀变速曲线运动;若物体的合外力为变力,则它做非匀变速曲线运动.

(2)看物体的加速度.若物体的加速度不变,则它做匀变速曲线运动;若物体的加速度变化,则它做非匀变速曲线运动.

例:关于运动的性质,以下说法中正确的是() A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动一定是变加速运动 D.加速度不变的运动一定是直线运动 【答案】 A

六、合运动、分运动的理解 【问题导思】

1.合运动、分运动的关系具备哪些特性? 2.运动的合成与分解满足什么规律?

3.速度、加速度、位移都能用平行四边形定则进行合成吗? 1.合运动与分运动

(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动. (2)物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.

2.合运动与分运动关系的四个特性

(1)等效性:各分运动的共同效果与合运动的效果相同. (2)等时性:各分运动与合运动同时发生和结束,时间相同. (3)独立性:各分运动之间互不相干,彼此独立,互不影响. (4)同体性:各分运动与合运动是同一物体的运动. 3.合运动与分运动的求法

(1)运动合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解.

(2)运动合成与分解的法则:合成和分解的内容是位移、速度、加速度的合成与分解,这些量都是矢量,遵循的是平行四边形定则.

(3)运动合成与分解的方法:在遵循平行四边形定则的前提下,处理合运动和分运动关系时要灵活采用方法,或用作图法或用解析法,依情况而定,可以借鉴力的合成和分解的知识,具体问题具体分析.

注意:1.将合运动分解时,可以分解到相互垂直的两个方向上,也可以分解到同一条直线上或其他方向上.

2.速度的合成与分解、位移的合成与分解和力的合成与分解的方法完全相同,之前所学的力的合成与分解的规律及方法可以直接应用.

七、小船渡河模型

例:小船要横渡一条200 m宽的河,水流速度为3 m/s,船在静水中的航速是5 m/s,求:

(1)当小船的船头始终正对对岸行驶时,它将在何时、何处到达对岸?

(2)要使小船到达河的正对岸,应如何行驶?多长时间能到达对岸?(sin 37°=0.6) 【答案】 (1)40 s 正对岸下游120 m处 (2)船头指向与岸的上游成53°角 50 s 1.渡河时间最短问题若要渡河时间最短,由于水流速度始终沿河道方向,不能提供指向河对岸的分速度,因此只要

课堂小结

板书

5.1 曲线运动

1、曲线运动

定义:运动轨迹是曲线的运动叫做曲线运动。

2、物体做曲线运动的条件

当物体所受的合力方向跟它的逮度方向不在同一直线上时,物体将做曲线运动。

3、曲线运动速度的方向

质点在某一点的速度,沿曲线在这一点的切线方向。

4、曲线运动的性质

曲线运动过程中速度方向始终在变化,因此曲线运动是变速运动。

推荐第5篇:曲线运动说课稿

说课标说教材演讲稿

各位领导老师大家好:

我是七十八中学的宋欣欣,今天我的说课标说教材的内容是物理必修2,曲线运动,下面我从说课程标准,说教材,说建议三个方面进行展开

一、说课标

总目标

高中物理的学习是终身发展必备的物理基础知识和技能,了解这些知识与技能在生活、生产中的应用,关注科学技术的现状及发展趋势;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题;保持好奇心与求知欲,发展科学探索兴趣,有坚持真理、勇于创新、实事求是的科学态度与科学精神,有振兴中华,将科学服务于人类的社会责任感;了解科学与技术、经济和社会的互动作用,认识人与自然、社会的关系,有可持续发展意识和全球观念。本单元具体目标分为三部分

(一)知识与技能

1.认识曲线物理学中的地位和作用,掌握物理实验的一些基本技能,能独立完成一些离心现象的物理实验。

2.关注物理学与其他学科之间的联系,知道桥梁建筑,火车轨道建筑时应注意哪些具体问题

(二)过程与方法

1.通过圆周运动的概念和规律的学习过程,了解物理学的研究方法,认识物理实验、物理模型和数学工具在物理学发展过程中的作用。

2.能计划并调控自己的学习过程,通过自己的努力能解决学习中遇到的一些物理问题,有一定自主学习的能力。

3.参加一些与本章有关的科学实践活动,尝试如果运动速度大于临界速度时的离心现象。

(三)情感、态度与价值观

1.能领略自然界的奇妙与和谐,保持好奇心与求知欲,乐于探究自然界的奥秘,能体验圆周运动的乐趣。 2.有参与科技活动的热情,有将圆周运动应用于生活和生产实践的意识,勇于探究与日常生活有关的圆周运动的问题。

课程内容

在课程内容上体现时代性、基础性和选择性内容标准 通过曲线运动的学习,能够分析生活中的圆周运动的向心力是由什么提供的,如乘坐摩天轮的乘客,汽车过桥时凸形桥与凹形桥那种桥更稳固。

二、说教材

人教版必修2教材中的曲线运动,前几节都是在讲解质点做曲线运动的条件而第四节讲解向心加速度,第五节讲解向心力,与旧教材有一定的不同,在旧教材中向心力与向心加速度的给出顺序恰好与新教材相反,旧教材中通过感受向心力给出向心力的方向,又牛顿第二定律得出向心加速度的大小及方向,而新教材则是先感受向心力的方向,通过运动学求解出向心加速度的大小及方向,而后通过牛顿第二定律得出向心力的方向,证实开始的结论,由此看来就教材注重概念的给出,而新教材则更重视知识的形成过程,旧教材完全由力学得出加速度,新教材则是从运动与力共同进行研究学习,虽然旧教材的这种给出方式可以直接又生活体验,学生容易接受,但是物理是一门严谨的学科,我们更应该注重知识的形成过程,有严谨的科学态度。

曲线运动这单元都是前面知识为后面知识做铺垫,做准备,又曲线运动的概念给出曲线运动的条件,又由此给出圆周运动的条件,从而得出向心力与向心加速度,最后一节是前面知识的概括,也是我们更能贴近生活的链接——生活中的圆周运动,本章的特点也是物理学科的特点,前面为后面铺垫,环环相扣,最后把知识运用到生活实际

三、说建议

(教学建议)

根据物理学科的学科特点,应着重改善物理教学的教学目标,主要从三维目标着手,知识与技能目标的完成时,物理中的一些概念都是又书中给出获者又教师给出,很多时候学生只是被动的接受,失去了原本的兴趣,所以在教学中应多采取讨论的方式进行研究,因为物理原本源于生活,这种讨论的方式更能提高学生的学习兴趣,例如,曲线运动的讲解时,请学生沿直线运动,此时施加外力,请同学们观察想想,若采取这种方式,学生就能更好的理解曲线运动的条件。过程方法就是刚说过的实践与讨论,这样的目标完成时同时提升的学生对生活的热爱,对物理现象的观察。 (评价建议 )

物理就是生活中的科学 对学生的评价主要是从三维目标入手 在知识与技能方面注重纸笔测验、学生活动表现、建立学习挡案;在过程与方法上综合三种评价方式的结合:学生自我评价、小组评价、老师的再评价,进行综合评定。建立学习挡案,教师要经常查阅,了解情况,对学生进步和发展及时给予肯定和鼓励;对存在问题和困难,进行针对性指导和帮助,并运用适当方式组织学生展示、交流、取长补短。在情感态度与价值观方面,注重学生的课堂表现、活动表现和责任意识表现。

四、开发利用

现代信息技术的迅猛发展和网络技术的广泛应用,为物理课程提供了丰富的课程资源。将信息技术与物理课程整合,既有利于学生学习物理知识和技能,又有利于培养学生收集信息、处理信息和传递信息的能力。

1、常用课程资源的开发和利用

挂图、幻灯片、投影片、录像带、视听光盘、多媒体软件等都是常用的课程资源,这些资源有利于创设形象生动的物理情景,丰富物理教学的内容,激发学生的学习兴趣,促进学生对知识的理解和掌握。多媒体计算机已经显示出它在科学教育中的巨大发展潜力。在物理课的学习中,因根据实际内容的需要,选用多种类型的多媒体辅助教学软件,重视传统媒体和计算机多媒体的有效利用,充分发挥它们在物理教学中的功能。加强课程资源的管理,尽快建立多媒体课程资源的数据库,努力实现跨学校多媒体资源的共享,以提高使用效率。 2.积极开发和利用网络课程资源

网络技术丰富了课程资源。局域网的构建为物理课程资源的开发和利用提供了机遇。为学生创设基于网络下的自主学习的环境,让学生学会独立学习和合作学习;充分利用诸如电子书籍、电子期刊、数据库、数字图书馆、教育网站和电子论坛等网上物理教育信息资源,使教学媒体从单一媒体向多种媒体向转变;使教学活动从信息的单向传递向双向交换转变;使学生从单个的学习活动向合作学习转变。

3.重视广播和电视课程资源 广播和电视上科技信息是直观和重要的课程资源。倡导教师实时收集这些课程信息,丰富物理教学的内容。例如,航天发射、核电站、纳米技术、环境保护等题材的内容。鼓励学生课后主动地通过这些渠道丰富自己对教学内容的理解和认识,开阔视野,同时也成为课程资源的建设者。

这是我对这一章的认识和理解,不足之处请各位领导老师批评指正,谢谢

推荐第6篇:05.1.曲线运动

曲线运动

一、教学目标:

1、知道什么是曲线运动;

2、知道曲线运动中速度的方向是怎样确定的;

3、知道物体做曲线运动的条件。

二、教学重点:

1、什么是曲线运动

2、物体做曲线运动的方向的确定

3、物体做曲线运动的条件

三、教学难点:

物体做曲线运动的条件

四、教学方法:

实验、讲解、归纳、推理法

五、教学步骤:

导入新课:

前边几章我们研究了直线运动,下边同学们思考两个问题:

1、什么是直线运动?

2、物体做直线运动的条件是什么?

在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。

新课教学

(一)用投影片出示本节课的学习目标

1、知道轨迹是曲线的运动,叫做曲线运动。

2、理解曲线运动是一种变速运动。

3、知道物体做曲线运动的条件。

(二)学习目标完成过程

1、曲线运动

(1)放录像,展示几种物体所做的运动

a:导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动;

b:归纳总结得到:物体的运动轨迹是曲线。

(2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢?

(3)用CAI课件对比小车在平直的公路上行驶和弯道上行驶的情况。

学生总结得到:曲线运动中速度方向是时刻改变的。

过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢?

2:曲线运动的速度方向

(1)放录像:

a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出;

b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。

(2)分析总结得到:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。

(3)推理:

a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。

b:由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。

1

 过渡:那么物体在什么条件下才做曲线运动呢?

3:物体做曲线运动的条件

(1)用CAI课件模拟实验:一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。

(2)观察完模拟实验后,学生做实验。

(3)分析归纳得到:当物体所受的合力的方向跟它的速度方向不在同一直线时,物体就做曲线运动。

(4)学生举例说明:物体为什么做曲线运动。

(5)用牛顿第二定律分析物体做曲线运动的条件:

当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。

如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就做曲线运动。

六、小结

1、运动轨迹是曲线的运动叫曲线运动。

2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。

3、当合外力F的方向与它的速度方向有一夹角a时,物体做曲线运动。

七、板书设计:

运动轨迹是曲线时间等相,互不影响速度方向时刻改变

曲线运动 速度方向对应于该点切的线方向当F合与V有一夹角时做曲线运动

推荐第7篇:第四章 曲线运动、万有引力定律

2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

四、曲线运动 万有引力

教学目标

1.通过讨论、归纳:

(1)明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动);

(2)熟悉平抛运动的分解方法及运动规律:理解匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式;

(3)知道万有引力定律及公式F=G

m1m2的适用条件 2r2.通过例题的分析,探究解决有关平抛运动、匀速圆周运动实际问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力.

教学重点、难点分析

1.本节的重点是引导学生归纳、总结平抛运动和匀速圆周运动的特点及规律. 2.本节描述物理规律的公式较多,理解、记忆并灵活运用这些规律是难点.必须充分发挥学生的主体作用,在学生自己复习的基础上,交流“理解、记忆诸多公式的方法、技巧”,是解决这一难点的重要手段之一.

教学过程设计

课前要求学生对本节知识的主要内容进行复习. 教师活动

1.引导、提出课题:物体在什么条件下做曲线运动?请举例说明.(必要时,提示学生不要局限于力学范围)

学生活动

分组讨论,代表发言:当物体受到的合外力的方向跟速度方向不在一条直线上时,物体将做曲线运动.

例如:物体的初速度不沿竖直方向且只受重力作用,物体将做斜抛或平抛运动.(如果将重力换成恒定的电场力,或者除重力外还受到电场力,但它们的合力跟初速度的方向不在一条直线上,物体的运动轨迹也是抛物线.通常称为类斜抛运动、类平抛运动.)

当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.)

如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球沿离心轨道运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.

此外,还有其它的曲线运动.如:正交电磁场中带电粒子的运动——轨迹既不是圆也不是抛物线,而是摆线;非匀强电场中带电粒子的曲线运动等.

在各种各样的曲线运动中,平抛运动和匀速圆周运动是最基本、最重要的运动,我们应该牢牢掌握它们的运动规律.

2.问:怎样获得平抛的初速度呢?

答:水平力对物体做功(给物体施加水平冲量);物体从水平运动的载体上脱离. 3.问:如何描述平抛运动的规律?

答:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动. 位移公式:

1 2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

12xvt;ygt02 ygt22sxy;arctanarctanx2v0速度公式:

vxv0;vygtvygt 22vtvxvy;arctanvarctanvx04.问:向心加速度有几种表达式?各适用于什么情况?

答:适用于匀速圆周运动和非匀速圆周运动的公式有:

v2an;anr2;anv

r只适用于匀速圆周运动的公式有:

42an2r;an42n2r

T[小结]前三个公式是用瞬时量线速度v和角速度ω表示的,因而是普遍适用的.周期T和转速n不是瞬时量,后两个公式只适用于匀速圆周运动.

5.问:请叙述万有引力定律的内容.

答:任何两个物体之间都存在相互吸引的力.引力的大小跟两个物体质量的乘积成正比,跟它们之间距离的二次方成反比.

m1m2在什么情况下适用? 2rmm答:公式F=G122只适用于质点或质量分布均匀的球体,式中r是质点间或球心间r

6、问:公式F=G的距离.

7.问:解决天体(或人造卫星、飞船)做匀速圆周运动问题的主要依据是什么? 答:向心力由万有引力提供.即:F引=F向=man. 其中,an应根据具体情况选用不同的表达式.

8.请演算下题:质量为m=1000kg的人造卫星从位于地球赤道的卫星发射场发射到离地高为h=R0=6400km的轨道上环绕地球做匀速圆周运动.求:发射前卫星随地球自转的线速度和所需要的向心力;卫星在轨道上运行时的线速度和受到的向心力.

从演算的结果可以得出什么结论? 学生演算.演算结果:

在地面上,v0=0.465km/s;F0=33.8N; 在轨道上,v=5.585km/s;F=2450N.

在地面上,物体随地球自转的向心力F0远小于地球对物体的引力.所以,一般计算可以不考虑地球自转的影响,而认为重力等于引力.物体随地球自转的线速度v0远小于卫星在地面附近环绕地球运行的速度——第一宇宙速度(7.9km/s).

在轨道上,向心力等于引力.卫星的线速度随轨道半径的增大而减小.(动能虽然小了,势能却增大了,所以卫星在较高的轨道上运行需要有更大的机械能.)

例题分析

2 2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L.若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为3L.,已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G.求该星球的质量M.

分析与解:

这是一道典型的综合运用平抛运动规律和万有引力定律的题.应该注意两点:(1)“抛出点与落地点之间的距离”不是“水平射程”;

Mm求出g=G 2RM12。,由于抛出点的高度不变,所以两次运动的时间相同,竖直位移均等于y=gt;22R(2)“重力加速度”不是地面上的g=9.8m/s,而应根据mg=g

2水平位移分别为x1=x和x2=2x,由平抛运动的位移公式得到

L2=x2+y2 (3L)2(2x)2y2

1解得y

3L1M所以G2t2

R3223LR2 M23Gt[例2]如图1-4-1所示,用细绳一端系着的质量为M=0.6kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=0.3kg的小球B,A的重心到O点的距离为0.2m.若A与转盘间的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围.(取g=10m/s2)

分析与解:

要使B静止,A必须相对于转盘静止——具有与转盘相同的角速度.A需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O.

对于B,T=mg

对于A,TfMr1,TfMr2 22

[例3]一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m

1、m

2、R与v0应满足的关系式是______.

分析与解:

3 2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题.

A球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此时两球作用于圆管的合力为零,B球对圆管的压力一定是竖直向上的,所以圆管对B球的压力一定是竖直向下的.

由机械能守恒定律,B球通过圆管最高点时的速度v满足方程

112m2v2m2g2Rm2v0 (1) 22根据牛顿运动定律

2v0对于A球 N1m1gm1 (2)

Rv2对于B球 N2m2gm2 (3)

R2v0(m15m2)g0 解得 (m1m2)R[例4]质量为m的小球,由长为l的细线系住,细线的另一端固定在A点,AB是过A的竖直线,E为AB上的一点,且AE=

L,过E作2水平线EF,在EF上钉一铁钉D,如图1-4-2所示.若线能承受的最大拉力是9mg,现将悬线拉至水平,然后由静止释放,若小球能绕钉子在竖直平面内做圆周运动,求钉子位置在水平线上的取值范围.不计线与钉碰撞时的能量损失.

分析与解:

设ED=x,则细线碰到钉子后,做圆周运动的半径r=L-Lx2()2,此半径必须满足两个临界条件

2小球通过该圆的最低点时, 细线拉力F≤9mg (1) 小球通过该圆的最高点时,

小球的速度v≥rg (2)

根据机械能守恒定律,(3) /1Lmv2mg(r) 221Lmv/2mg(r) (4) 22v2由牛顿运动定律,Fmgm (5)

rLL2L2联立解(1)、(3)、(5)得r≥,即Lx()≥,

662

4 2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

所以x≤2L 3LL2L72,即1x()≤,所以x≥L 3362联立解(2)、(4)得r≤故x的取值范围是27L≥x≥L 36[例5]如图1-4-4所示,在XOZ(Z轴与纸面垂直)平面的上、下方,分别有磁感应强度为B

1、B2的匀强磁场.已知B2=3B1,磁场方向沿Z轴指向纸外.今有一质量为m、带电量为q的带正电的粒子,自坐标原点O出发,在XOY平面(纸面)内,沿与X轴成30°方向,以初速度v0射入磁场.问:

(1)粒子从O点射出到第一次通过X轴,经历的时间是多少?并确定粒子第一次通过X轴的点的坐标.

(2)粒子从O点射出到第六次通过X轴,粒子沿X轴方向的平均速度是多少?并画出粒子运动的轨迹示意图.

分析与解:

带电粒子在匀强磁场中做匀速圆周运动的圆心位置,可根据几何知识确定. 如右图1-4-5所示,粒子从O点出发,在磁场B1中顺时针绕行60°弧,第一次通过X轴的位置在X轴上的P点,圆心在O1点,半径为R1:

2mv0v0(1)B1qv0m,所以半径R1,周期

qB1R12m0,因为OO1P60,所以T16qB1OPR1,从O到P点的时间t1P点坐标为(

T1πm 63qB1mv0,0,0) qB1/(2)粒子在磁场B2中顺时针绕行300°弧后通过X轴的位置在P点,圆心在O2点,半径为R2mv0mv0R2m3m 1,周期为T2qB22qB1qB23qB132mv0/0/因为POP60,所以PP/R2,所以OPR1R2

63qB15T5πm从P到P’的时间t2= 69qB1 5 2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

粒子第六次通过X轴的位置为Q点,OQ3OP\'从O到Q的时间t=3(t1+t2)=

2mv0 qB18πm 3qB1OQ3v0 t4π粒子从O到Q沿X轴方向的平均速度为v同步练习

一、选择题

1.做平抛运动的物体,每秒的速度增量总是 [ ]

A.大小相等,方向相同 B.大小不等,方向不同 C.大小相等,方向不同 D.大小不等,方向相同

2.从倾角为θ的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为α2,若v1>v2,则 [ ]

A.α1>α2 B.α1=α2 C.α1<α2 D.无法确定

3.两颗人造卫星A、B绕地球做匀速圆周运动,周期之比为TA∶TB=1∶8,则轨道半径之比和运动速率之比分别为 [ ]

A.RA∶RB=4∶1,vA∶vB=1∶2 B.RA∶RB=4∶1,vA∶vB=2∶1 C.RA∶RB=1∶4,vA∶vB=1∶2 D.RA∶RB=1∶4,vA∶vB=2∶1

4.可以发射一颗这样的人造地球卫星,使其圆轨道 [ ] A.与地球表面上某一纬度线(非赤道)是共面同心圆 B.与地球表面上某一经度线所决定的圆是共面同心圆

C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的 D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的 5.如图1-4-6所示,直线Bb与曲线AB相切于B.一带电粒子(不计重力)在方向与纸面平行的匀强电场中沿曲线AB运动,当它到达B点时,电场突然改变方向而不改变大小.此后粒子的运动情况是[ ]

A.可能沿曲线Ba运动 B.可能沿直线Bb运动

C.可能沿曲线Bc运动 D.可能沿原曲线返回到A点

二、非选择题

6.已知地球半径约为6.4×106m,已知月球绕地球的运动近似看作匀速圆周运动,则可估算出月球到地心的距离约为_____m.(结果只保留一位有效数字)

7.某人在半径为R的星球上以速度v0竖直上抛一物体,经时间t物体落回抛出点.那么,飞船在该星球表面附近环绕星球做匀速圆周运动的速度应为______.

8.已知地球的平均半径为R0,地球自转的角速度为ω0,地面上的重力加速度为g0.那么,质量为m的地球同步卫星在轨道上受到地球的引力为______.

9.如图1-4-7所示,斜面倾角为θ,小球从斜面上的A点以初速度v0水平抛出,恰好落到斜面上的B点.求:(1)AB间的距离;(2)小球从A到B运动的时间;(3)小球何时离开斜面的距离最大?

6 2004j届高三物理第一轮复习教案 绍兴县钱清中学赵伟良 2003年9月

10.如图1-4-8所示,离心机的光滑水平杆上穿着两个小球A、B,质量分别为2m和m,两球用劲度系数为k的轻弹簧相连,弹簧的自然长度为l.当两球随着离心机以角速度ω转动时,两球都能够相对于杆静止而又不碰两壁.求A、B的旋转半径rA和rB.

11.如图1-4-9所示,在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m的带电小球,另一端固定于O点.把小球拉起直至细线与场强平行,然后无初速释放.已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ.求小球经过最低点时细线对小球的拉力.

参考答案 1.A 2.B 3.D 4.CD 5.C 22Rv04v2406.6.4×10 7. 8.m3g0R00 9.(1)

t3g8(2) 23v03v0 (3) 3g3gkl2kl3kr且

B223k2m3k2m2m2cos) 11.Tmg(31sin10.rA 7

推荐第8篇:高中教案 曲线运动

6.1曲线运动

知识与技能

1、知道什么是曲线运动;

2、知道曲线运动中速度的方向是怎样确定的;

3、知道物体做曲线运动的条件。

过程与方法

通过物体做曲线运动的条件的分析,提高学生能抓住要点对物理现象技术分析的能力

情感态度与价值观

使学生会在日常生活中,善于总结和发现问题。

教学重点

1、什么是曲线运动

2、物体做曲线运动的方向的确定

3、物体做曲线运动的条件

教学难点

物体做曲线运动的条件

教学过程 新课教学

导入:

前边几章我们研究了直线运动,下边同学们思考两个问题:

1、什么是直线运动?

2、物体做直线运动的条件是什么?

在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。

一、曲线运动

(1)几种物体所做的运动

导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动; 归纳总结得到:物体的运动轨迹是曲线。

(2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢? (3)学生总结得到:曲线运动中速度方向是时刻改变的。

过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢?

2:曲线运动的速度方向

(1)手通过细线拉一小球在光滑水平面上做圆周运动,在某位置A突然放手,描出小球的运动方向。

学生回答,沿切线方向飞出。然后引导学生分析原因:放手后小球速度方向不再发生变化,由于惯性,从即刻起小球做匀速直线运动,沿切线飞出

实例:a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出; 图6.1 b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。

(2)分析总结得到:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。 (3)推理:

a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。 b:由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。 c:曲线运动的一定有加速度,物体一定受到合外力。

 过渡:那么物体在什么条件下才做曲线运动呢?

3:物体做曲线运动的条件

(1)实验:一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。

(2)分析归纳得到:当物体所受的合力的方向跟它的速度方向不在同一直线时,物体就做曲线运动。

(3)学生举例说明:物体为什么做曲线运动。 (4)用牛顿第二定律分析物体做曲线运动的条件:

当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。

如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就做曲线运动。

三、巩固训练:

1.质点做曲线运动时

A.速度的大小一定在时刻变化 B.速度的方向一定在时刻变化 C.它一定在做变速运动

D.它可能是速率不变的运动 2.某质点做曲线运动时

A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内的位移大小总是大于路程

C.在任意时刻质点受到的合外力不可能为零 D.速度的方向与合外力的方向必不在一直线上 3.下列判断中正确的是

A.物体在恒力作用下不可能做曲线运动

B.物体在变力或恒力作用下都有可能做曲线运动 C.物体在变力作用下不可能做曲线运动

D.物体做曲线运动时,某点的加速度方向就是通过这一点的曲线的切线方向

4.物体在几个力的共同作用下,做匀速直线运动,当其中一个力停止作用时,物体的可能运动形式是 A.匀速直线运动 B.匀加速直线运动 C.匀减速直线运动 D.曲线运动

5.如图所示,曲线为质点运动的轨迹,在通过位置P时速度、加速度及P附近的一段轨迹都在图上标出,其中可能正确的是

6.如图所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受的力反向而大小不变(即由F变为—F),在此力作用下,物体以后的运动情况将 A.物体可能沿Ba曲线运动 B.物体可能沿Bb曲线运动 C.物体可能沿Bc曲线运动

D.物体可能沿原曲线由B返回A

四、小结

1、运动轨迹是曲线的运动叫曲线运动。

2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。

3、当合外力F的方向与它的速度方向有一夹角α时,物体就做曲线运动。

五、作业:P34 T

2、3

评价手册

推荐第9篇:曲线运动 讲课稿

曲线运动 讲课稿

【师】同学们,接下来我们继续研究曲线运动。经过刚才的环节我们已经知道:运动轨迹为曲线的运动就是曲线运动,而且大家已经学会利用平面直角坐标系来描述曲线运动的位移,下面我们一起来讨论曲线运动另一个重要的物理量——速度。

【师】首先看一段视频:(展示视频)这是一段赛车视频,视频中赛车时而做直线运动,时而做曲线运动。思考一下,直线运动和曲线运动的速度方向是怎样的呢?

【师】对!同学们都知道,直线运动的速度方向比较简单,就是沿物体运动的直线方向! 而曲线运动的速度方向就比较复杂了。没关系,让我们先看生活中的两个现象:下雨天,旋转带水的雨伞时,水滴随雨伞旋转,甩出的时候,水滴飞出的方向就是该点的速度方向。同样的,运动员高速旋转扔出链球,运动员撒手时,球飞出去的方向也是这个时刻的速度方向。

【师】接下来,老师用带小孔的圆盘模拟旋转的雨伞,用墨汁当作水滴,用带绳的小球代替链球,尝试利用老师提供的器材进行小组实验,确定速度方向。注意不要把墨水溅到身上。

【小组回答并展示】①我们小组认为水滴的速度是沿切线方向。我们选择这个圆盘来进行实验:向圆盘内滴入墨汁,将其绕轴旋转,墨滴从边缘的小孔飞出,在白纸上留下了清晰的墨迹。墨迹显示墨滴飞出的速度方向就是沿切线方向。②我们小组认为链球的速度也是沿切线方向,我们用的是这个拴着细绳的小球,使小球绕一个定点旋转,突然松手,小球飞出的方向也是沿切线方向。

【师】同学们经过小组合作圆满完成了实验,结论也完全正确,他们的速度方向都是沿切线方向。但是,实验中墨盘和小球旋转形成的曲线都是特殊的圆形,对于一般的曲线运动速度方向也是沿切线方向吗?别着急,看老师是如何操作的。

【演示实验】大家看老师手中是一根细管,一端是弯曲的针头,用注射器吸

1 取红墨水并连接细管,用力推注射器,红墨水会沿着细管作 曲线运动,从管口射出的方向就是针头处墨水的速度方向。现在老师推动三个活塞。大家看,红墨水形成的三条墨迹都是沿切线方向,也就是说,针头处墨水的速度方向确实沿曲线的切线方向。这样就说明了一般曲线运动的速度就是沿切线方向。(板书)

【师】那一般曲线的切线到底如何确定呢?接下来我们看一看数学中关于曲线的切线是如何定义的:(展示视频)如果在一条曲线上取定点A和动点B,当B点不断运动无限逼近A点时,两点连线形成的割线最终就会成为曲线在A点的切线,这就是数学中关于曲线切线的定义。现在同学们对于速度方向是不是有了更深的理解了呢?

【师】那现在就请同学们跟着老师做个小练习检验一下吧:如果一个质点沿曲线运动,从A点经过B、C、D到达E点,那你能作出质点在B、C、D三点的速度方向吗?请这一位同学上台试一试。其他同学也在白纸上画一画。大家看这位同学做的对不对?对!完全正确!大家掌声鼓励一下!同学们 你们做对了吗?

【师】接下来让我们进一步分析曲线运动的速度。

【师】我们看到,在曲线上的不同位置(指出B、C、D三点)切线方向各不相同,也就是质点作曲线运动时速度方向在不断变化!大家知道,速度是矢量,也就是说速度在不断变化,因此,作曲线运动的物体一定具有(学生说)加速度!根据牛顿第二定律Fma(板书),当作曲线运动物体的加速度a0时,合外力F一定不为零。在第二章的学习中,我们知道作匀变速直线运动的物体合外力也一定不为零。那么问题就来了:什么样的合外力才能让物体做曲线运动而不是直线运动?也就是说:物体做曲线运动的条件究竟是什么?我们下一节课继续讨论!

谢谢大家!我的片段教学完毕。

推荐第10篇:05.1.曲线运动[www..net]

亿库教育网

http://www.daodoc.com 百万教学资源免费下载

曲线运动

一、教学目标:

1、知道什么是曲线运动;

2、知道曲线运动中速度的方向是怎样确定的;

3、知道物体做曲线运动的条件。

二、教学重点:

1、什么是曲线运动

2、物体做曲线运动的方向的确定

3、物体做曲线运动的条件

三、教学难点:

物体做曲线运动的条件

四、教学方法:

实验、讲解、归纳、推理法

五、教学步骤:

导入新课:

前边几章我们研究了直线运动,下边同学们思考两个问题:

1、什么是直线运动?

2、物体做直线运动的条件是什么?

在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。

新课教学

(一)用投影片出示本节课的学习目标

亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

1、知道轨迹是曲线的运动,叫做曲线运动。

2、理解曲线运动是一种变速运动。

3、知道物体做曲线运动的条件。

(二)学习目标完成过程

1、曲线运动

(1)放录像,展示几种物体所做的运动

a:导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动;

b:归纳总结得到:物体的运动轨迹是曲线。

(2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢?

(3)用CAI课件对比小车在平直的公路上行驶和弯道上行驶的情况。

学生总结得到:曲线运动中速度方向是时刻改变的。

过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢?

2:曲线运动的速度方向

(1)放录像:

a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出;

b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。

亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

(2)分析总结得到:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。

(3)推理:

a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。

b:由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。

 过渡:那么物体在什么条件下才做曲线运动呢?

3:物体做曲线运动的条件

(1)用CAI课件模拟实验:一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。

(2)观察完模拟实验后,学生做实验。

(3)分析归纳得到:当物体所受的合力的方向跟它的速度方向不在同一直线时,物体就做曲线运动。

(4)学生举例说明:物体为什么做曲线运动。

(5)用牛顿第二定律分析物体做曲线运动的条件:

当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。

如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可亿库教育网

http://www.daodoc.com 百万教学资源免费下载 亿库教育网

http://www.daodoc.com 百万教学资源免费下载

以改变速度的方向,物体就做曲线运动。

六、小结

1、运动轨迹是曲线的运动叫曲线运动。

2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。

3、当合外力F的方向与它的速度方向有一夹角a时,物体做曲线运动。

七、板书设计:

运动轨迹是曲线时间等相,互不影

曲线运动速度方向时刻改变速度方向对应于该点切的线方向当F合与V有一夹角时做曲线运动

亿库教育网

http://www.daodoc.com 百万教学资源免费下载

第11篇:高一物理曲线运动教案

高中物理辅导网http://www.daodoc.com/

曲线运动

一、教学目标:

1、知道什么是曲线运动;

2、知道曲线运动中速度的方向是怎样确定的;

3、知道物体做曲线运动的条件。

二、教学重点:

1、什么是曲线运动

2、物体做曲线运动的方向的确定

3、物体做曲线运动的条件

三、教学难点:

物体做曲线运动的条件

四、教学方法:

实验、讲解、归纳、推理法

五、教学步骤:

导入新课:

前边几章我们研究了直线运动,下边同学们思考两个问题:

1、什么是直线运动?

2、物体做直线运动的条件是什么?

在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。

新课教学

(一)用投影片出示本节课的学习目标

京翰教育中心http://www.daodoc.com/

高中物理辅导网http://www.daodoc.com/

1、知道轨迹是曲线的运动,叫做曲线运动。

2、理解曲线运动是一种变速运动。

3、知道物体做曲线运动的条件。

(二)学习目标完成过程

1、曲线运动

(1)放录像,展示几种物体所做的运动

a:导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动;

b:归纳总结得到:物体的运动轨迹是曲线。

(2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢?

(3)用CAI课件对比小车在平直的公路上行驶和弯道上行驶的情况。

学生总结得到:曲线运动中速度方向是时刻改变的。

过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢?

2:曲线运动的速度方向

(1)放录像:

a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出;

b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。

京翰教育中心http://www.daodoc.com/

高中物理辅导网http://www.daodoc.com/

(2)分析总结得到:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。

(3)推理:

a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。

b:由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。

过渡:那么物体在什么条件下才做曲线运动呢?

3:物体做曲线运动的条件

(1)用CAI课件模拟实验:一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。

(2)观察完模拟实验后,学生做实验。

(3)分析归纳得到:当物体所受的合力的方向跟它的速度方向不在同一直线时,物体就做曲线运动。

(4)学生举例说明:物体为什么做曲线运动。

(5)用牛顿第二定律分析物体做曲线运动的条件:

当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。

如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可

京翰教育中心http://www.daodoc.com/

高中物理辅导网http://www.daodoc.com/ 以改变速度的方向,物体就做曲线运动。

六、小结

1、运动轨迹是曲线的运动叫曲线运动。

2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。

3、当合外力F的方向与它的速度方向有一夹角a时,物体做曲线运动。

七、板书设计:

运动轨迹是曲线时间相等,互不影响

曲线运动速度方向时刻改变

速度方向对应于该点的切线方向当F合与V有一夹角时做曲线运动

京翰教育中心http://www.daodoc.com/

第12篇:物理曲线运动教案(推荐)

【本讲教育信息】

一.教学内容:

曲线运动 行星运动综合复习

二.曲线运动经典例题分析

(一)平抛运动初速度的求解方法 求解平抛运动的基本思路是:水平方向做匀速直线运动,只要求出水平方向的位移和所用的时间,就能求出平抛运动的初速度。竖直方向是自由落体运动,根据匀加速直线运动的规律就可列出时间的有关方程。

例1:图1是研究平抛运动实验后在白纸上作的图和所测数据,根据图中给出的数据,计算出此平抛运动的初速度v0。

图1

分析与解:

例2:如图2为一小球做平抛运动的闪光照相片的一部分,图中背景方格的边长均为5cm。如果取,那么:

(1)闪光频率是 Hz。

(2)小球运动中水平分速度的大小是 m/s。 (3)小球经过B点时的速度大小是 m/s。

图2 分析与解:从图中知,A、B、C三点在水平方向上相邻两点间的距离均为3L;所用时间相等均为t,,而t可根据竖直方向的自由落体运动求得。

(2)(3)

,其中

为竖直方向上经过B点的瞬时速度。

所以

例3:在研究平抛运动的实验中,某同学只在竖直板面上记下了重锤线y的方向,但忘了记下平抛的初位置,在坐标纸上描出了一段曲线的轨迹,如图3所示,现在曲线上取A、B两点,量出它们到y轴的距离,可以求得小球平抛时初速度为 。

,,以及AB的竖直距离h,用这些

图3 分析与解:设初速度为v0,则

竖直方向做自由落体运动,有得

(二)有关转动的几个实际问题

同一球体或同一转盘绕同一轴线转动,各点角速度大小相等。宜选用的向心加速度公式为:;宜选用的向心力的公式:。 例4:放在赤道上的物体I和放在北纬60°处的物体II,由于地球的自转,它们的( )

A.角速度之比为B.线速度之比为C.向心加速度之比为D.向心加速度之比为

都等于地球自转角速度。由,即

分析与解:物体I和物体II都在地球上,角速度于物体II的转动半径因,

则答案:BC

,物体I的转动半径例5:如图4所示,已知,它们距轴的关系是体与转盘表面的动摩擦因数相同,当转盘的转速逐渐增加时( )

A.物体A先滑动 B.物体B先滑动

C.物体C先滑动 D.B与C同时开始滑动

,三物

图4 分析与解:三物体绕圆盘转动,是静摩擦力提供向心力。物体滑动的条件是物体受到的最大静摩擦力不足以提供做圆周运动所需要的向心力,即,即说明三个物体哪个先滑动跟物体的质量无关,只跟半径有关,半径较大的先滑动。

。答案:B 点评:有关转动问题,应注意隐含条件,同一转轴的物体上各点角速度大小相等;同一皮带,与皮带接触的各点线速度大小相等。

(三)平抛运动的应用

分析平抛运动的方法是分解为水平和竖直的分运动,水平方向上由于没有受力,做匀速直线运动;竖直方向上由于只受重力,初速度为零,做自由落体运动。

例6:甲、乙两球位于同一竖直直线上的不同位置,甲比乙高出h。将甲、乙两球以v

1、v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(

A.同时抛出,且C.甲早抛出,且

B.甲迟抛出,且 D.甲早抛出,且

图5 分析与解:如图5,乙击中甲球的条件,水平位移相等,甲的竖直位移等于乙的竖直位移加上h。即

由②得再结合①得 答案:选D 例7:甲乙两人在一幢楼的三楼窗口比赛掷垒球,他们都尽力水平掷出同样的垒球,不计空气阻力,甲掷的水平距离正好是乙的两倍,若乙要想水平掷出相当于甲在三楼窗口掷出的距离,则乙应(不计一楼窗口离地高度)( )

A.在5楼窗口水平掷出 B.在6楼窗口水平掷出 C.在9楼窗口水平掷出 D.在12楼窗口水平掷出

分析与解:设乙在n楼窗口与甲在三楼窗口掷出的距离相等,一层楼高为h,则三楼

高为2h,n楼高为,有 ①

又甲、乙同在三楼时,甲掷的水平距离正好是乙的二倍,有

联立①②解得 ∴ 答案:选C 例8:如图6一农用水泵的出水管是水平的。若仅有一钢卷尺和一直棍,怎样估算水泵的流量。

图6 分析与解:流量是单位时间内流过水管的水的体积

经过时间t,从出水管流出的水的体积水管的横截面积

。为水做平抛运动的初速度,S为出

。只要用钢卷尺测出出水管的直径D,即可求S。

v0可通过测量射程x和水泵的高度h,求得联立可得

只要测出管口的直径、射程x和水泵的高度h,即能得出流量Q。

例9:张明在楼梯走道边将一颗质量为20g的弹子沿水平方向弹出,不计阻力,弹子滚出走道后直接落到“2”台阶上,如图7示,设各级台阶宽、高都为20cm,则他将弹子打出的速度大小在 范围,打出弹子时他消耗的体能在 范围。

图7 分析与解:弹子从D点开始做平抛运动,当速度较小时落在C点。此时为弹子打出的速度最小值。

由,

解得,打弹子消耗的体能为 当速度较大时落在B点,此时为弹子打出的速度最大值。 由解得答案:,

,打弹子消耗的体能为

;~

三.万有引力定律章节部分易错问题例析

(一)关于万有引力表达式中的r和向心力表达式中的r 例1:两颗靠的较近的天体称为双星,它们以两者的连线上某点为圆心做匀速圆周运动,而不会由于万有引力作用,使它们吸在一起(不考虑其他天体对它们的影响),已知两天体质量分别为m1和m2,相距为L,求它们运转的角速度。

分析:同学们在习惯了万有引力解题定势,即万有引力表达式

提供向心力

的r和向心力表达式

、、

后可能会形成一种的r始终是同一个物理量,殊不知中的r为m、M两者间的距离,而、中的r为圆周运动的轨道半径,两者含义并不相同。在解此题时学生由于忽略两者区别导致如下错误:

设m

1、m2的运动轨道半径分别为r

1、r2,则得

② 联立①②③三式解得

正确答案:m

1、m2间的万有引力分别提供两者的向心力,从而建立如下等式

联立④⑤⑥解得

(二)关于星球表面的重力加速度和星球的向心加速度

例2:(2002年上海卷)一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速 度为g1,行星的质量M与卫星的质量m之比比径

,行星的半径R1与卫星的半径R2之

r,行星与卫星之间的距离与行星的半

之比。设卫星表面的重力加速度为g2,则在卫星表面有: 经过计算得出:卫星表面的重力加速度为行星表面重力加速度的三千六百分之一。上述结果是否正确?若正确,列式证明;若错误,求出正确结果。

分析:同学们对星球表面的重力加速度和星球的向心加速度的概念没有从本质上搞清楚,从而经常将两者混为一谈,凭感觉下结论,认为题中所提供的“设卫星表面的重力加速度为g2,则在卫星表面有:”这一句话是正确的,从而得到“卫星表面的重力加速度为行星表面重力加速度的三千六百分之一”结论是正确的错误判断。

正确解答应该是首先弄清楚重力加速度和向心加速度概念的区别:题中卫星表面的重力加速度应理解为忽略自转时其对表面物体的万有引力与表面物体质量的比值,假设卫星表面有一物体质量为m0,卫星表面的重力加速度为g2,则有 ①

而卫星的向心加速度a应是行星对卫星的万有引力(提供卫星绕行星运转的向心力)与卫星质量的比值。则有:。由此可见题中所列等式“”的错误就在于将卫星的向心加速度当成了卫星表面的重力加速度。理清了重力加速度与向心加速度的概念后,对于行星表面的重力加速度g1可这样求解 ②

联立①、②两式并结合题中已知条件可得卫星表面的重力加速度g2为行星表面重力加速度g1的0.16倍。

(三)关于卫星的发射速度和运行速度

例3:由第

一、第

二、第三宇宙速度的值可知,人造地球卫星在贴近地表时的第一宇宙速度最小;而由公式

可知,环绕半径r越小,其线速度v越大,即贴近地表的环绕速度为最大,这是否矛盾?

例4:关于第一宇宙速度,下列说法正确的是( ) A.它是人造地球卫星绕地球飞行的最小速度 B.它是近地圆形轨道上人造地球卫星的运行速度 C.它是能使卫星进入近地圆形轨道的最小发射速度 D.它是卫星在椭圆轨道上运行时近地点的速度 分析:同学们在解答上述关于宇宙速度、发射速度和运行速度的类似问题时,经常会产生一些错误,诸如将发射速度与运行速度理解为同一种速度;不能判断随着运行轨道半径的增大,运行速度与发射速度的大小情况;或者产生象例题3中那样的困惑。

要解决上述问题,同学们必须真正理解透彻发射速度和运行速度的概念。运行速度是卫星在圆形轨道上运行的线速度,由万有引力提供向心力

得运行速度可知:随轨道越高(即运行半径r越大),运行速度越小,而发射速度是指在地面上将卫星发射出去的速度。虽然轨道越高时运行速度越小,但由于人造地球卫星发射过程中要克服地球引力做功,增大势能,所以要想将卫星发射到离地面越远的轨道上时,在地面上所需要的发射速度就越大。例如要挣脱地球引力,需要的发射速度为,而若要使物体挣脱太阳引力束缚的最小发射速度为。所以人造地球卫星发射速度越大,离地面的高度越大,其运行速度反而越小。只有当卫星贴近地面飞行时,其发射速度与运行速度才相等,此时发射速度最小,而运行速度却最大,即第一宇宙速度是人造地球卫星绕地球飞行的最大速度,也是使卫星能进入近地圆形轨道的最小发射速度。

(四)关于卫星的稳定运行速度和动态变轨速度

例5:有两艘宇宙飞船均在同一轨道上绕地球做匀速圆周运动,一前一后,若后面的飞船突然加速,问能否追上前面的飞船?若不能请进一步分析后面的飞船加速后是向外飞还是向里飞?

分析:不少同学在回答前一个问题时一般都能判断得到“不能追上前面的飞船”这一正确答案,理由是由

可知,飞船稳定运行速度v与圆周轨道半径r是一一对应的,当v变化时,r必发生变化,故后面的飞船加速后会脱离原轨道,无法追上前面的飞船。但在回答后一个问题“加速后,后面的飞船是向外还是向里飞”时,很多同学就会产生“飞船向里飞”的错误结论,理由是根据等式

,当增大时,必有r减小,所以,飞船向里飞,靠近地球,根据分析之所以得出错误结论,是因为不了解该式的适用对象是正在做匀速圆周运动的卫星(物体),即是卫星的稳定运行速度,而飞船加速后(此时的速度称作变轨速度)它将离开原来的轨道,并非正做匀速圆周运动,不能再用等式

分析,而应根据所需向心力与所提供的向心力的大小关系来判断。设飞船在轨道上做匀速圆周运动时所需向心力为,外力提供的向心力为,只有当时,物体做近心运动;当中,飞船速度加大时,由

知,

时,物体才做圆周运动;当时,物体做离心运动。本题增大。而此时的向心力仍,故后面的飞船加速后将由万有引力提供,即,有做离心运动而向外飞,减速向心。

【模拟试题】

1.关于曲线运动,下列说法正确的是(

A.曲线运动一定是变速运动 B.变速运动不一定是曲线运动

C.曲线运动可能是匀变速运动 D.曲线运动其加速度方向一定改变 2.下列关于圆周运动的说法中正确的是( )

A.作匀速圆周运动的物体,所受合外力一定指向圆心 B.作圆周运动的物体,其加速度可以不指向圆心 C.作圆周运动的物体,其加速度一定指向圆心 D.作匀速圆周运动的物体,其加速度是不变的

3.物体受到几个外力的作用而做匀速直线运动,如果撤掉与速度共线的一个力,其他力不变,则它有可能(

A.做匀速直线运动 B.做匀加速直线运动

C.做匀减速直线运动 D.做曲线运动 4.如图所示,两轮用皮带传动,没有打滑,A、B、C三点位置见图示,则这三点的向心加速度的关系为( )

A.C. B. D.

5.如图所示,物体在恒力F作用下沿曲线从A运动到B,这时,突然使它所受力反向,大小不变,即由F变为-F。在此作用下,物体以后的运动情况,下列说法中不正确的是( )

A.物体不可能沿曲线Ba运动 B.物体不可能沿直线Bb运动 C.物体不可能沿曲线Bc运动 D.物体不可能沿曲线B返回A 6.如图所示,把一个长为20cm,劲度系数为弹簧的另一端连接一个质量为0.50kg的小球,当小球以做匀速圆周运动时,弹簧的伸长应为( )

A.5.2cm B.5.3cm C.5.0cm D.5.4cm

的弹簧,一端固定,作为圆心,

的转速在光滑水平面上

7.如图所示,一个内部光滑的圆锥桶的轴线垂直于水平面,圆锥桶固定不动。有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面作匀速圆周运动,则( )

A.球A的线速度必定小于球B的线速度 B.球A的角速度必定小于球B的角速度 C.球A的运动周期必小于球B的运动周期

D.球A对筒壁的压力必定大于球B对筒壁的压力

8.长度为的轻质杆OA,A端有一质量为的小球,如图所示,小球以O点为圆心在竖直平面内作圆周运动,通过最高点时小球的速率为2m/s(g取10m/s2),则此时细杆OA受到(

A.6N的拉力 B.6N的压力 C.24N的拉力 D.24N的压力

9.如下图所示,P、Q为质量均为m的两个物体,分别置于地球上不同纬度上,如果把地球看成一个均匀球体,P、Q两质点随地球自转而做匀速圆周运动,则(

① P、Q受地球引力大小相等

② P、Q做圆周运动的向心力大小相等 ③ P、Q做圆周运动的角速度大小相等 ④ P、Q做圆周运动的周期大小相等

A.①②③ B.①③④ C.②③④ D.①②④

10.a、b为地球上两物体,a处于北纬40°,b在赤道上,c、d为地球卫星,c、d轨道都在赤道平面上,c为近地卫星,d为同步卫星,关于a、b、c、d的T,是(

A.

B.

,g、v正确判断C., D.,

11.宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站( ) A.只能从较低轨道上加速 B.只能从较高轨道上加速

C.只能从同一空间站同一高度轨道上加速 D.无论什么轨道加速都行

12.如下图所示,3个质量相等的小球A、B、C固定在轻质硬杆上,而且,现将该装置放在光滑水平桌面上,使杆绕过O的竖直轴匀速转动,设OA、AB、BC上的拉力分别为F

1、F

2、F3,则

13.如图所示,在高为H的光滑平台上有一物体用绳子跨过定滑轮C由地面上的人以恒定速度v0向右拉动,不计人的高度,当人从地面上平台的边缘A处向右移动距离s到达B处时,物体的速度v = ,物体移动的距离d= 。

14.绕地球运动的二卫星,如图所示作匀速圆周运动,周期分别为T1和T2,此时相距最近,则两星再次相距最近所需最短时间为 ;再次相距最远所需最短时间为 。

万有引力复习中应注意的几个问题

吴社英

高中物理新教材把“万有引力定律”单独设为一章,主要讲述万有引力定律的发现及其在天体运动中的应用,其中该定律的具体运用是本章的重点之一。本章虽然内容不多,概念较少,但在学习中,如果概念学不透彻,某些概念之间的区别与联系没有理顺,天体运动的物理过程分析不清,在具体解决天体运动的问题时,就可能只知道万有引力提供向心力,缺乏概念的辨析能力和分析问题的能力。

一、不同公式和问题中的r,含义不同

万有引力定律公式FGm1·m2中的r指的是两个质点间的距离,对于相距很远因而2rm·v2可以看做质点的物体,指的是两个球心的距离。而向心力公式F中的r,对于椭

rr3圆轨道指的是曲率半径,对于圆轨道它等于圆半径。开普勒第三定律2k中的r指的是

T椭圆轨道的半长轴。因此,同一个r在不同公式中所具有的含义不同。

例1.如图1所示,两个靠得很近的恒星称为双星,这两颗星必须以相同的角速度绕某一中心转动才不至于因万有引力而吸引在一起,已知双星的质量分别为m1和m2,相距为L,万有引力常量为G,求:

(1)双星转动的中心位置; (2)转动周期。

图1 解析:设双星转动中心的位置O距离m1为r,与两恒星中心的距离L不同,则:

F引F向m1r2m2Lr2

解得:rm2L

m1m2在求第二问时更应注意距离和半径的区别,对恒星m1有:

mm2G122m1r

LT得转动同期为:

2L3T2

Gm1m2

例2.飞船沿半径为R的圆周绕地球运动,其周期为T,如果飞船要返回地面,可在轨道上某一点A处将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,如图2所示,求飞船由A点运动到B点所需要的时间。(已知地球半径为R0)

图2 解析:本题用开普勒第三定律求解比较简单。对地球卫星绕地运行时所有卫星的轨道半长轴的三次方跟公转周期平方的比值都相等,对于在圆周轨道上运行的卫星其轨道的半长轴

R3就是圆半径,所以,当飞船在圆周上绕地球运动时,有2k,当飞船进入椭圆轨道运动

TRR02k,由两式联立得飞船在椭圆轨道上运动的周期: 时,有2T'3T'RR03T8R3

故解得飞船由A运动到B点所需的时间为t12RR03T8R3

二、向心加速度与重力加速度

对于向心加速度与重力加速度两个概念,既有区别又有联系:(1)在地球表面的不同纬度处,重力加速度的数值不相等,各处的向心加速度也不同;(2)在距离地面一定高度处绕地心做匀速圆周运动的物体具有的向心加速度和该处的重力加速度相等。

设地球质量为M,地球半径为R,地球表面的重力加速度为g,物体m离开地心的距离为r,在该处的向心加速度为a向,重力加速度为g',则由:

Mmma向mg'2r MmG2mgRG联立得:a向Rg'g

r2注:在距离地面一定高度处绕地心做匀速圆周运动的物体,重力完全提供向心力,所以物体处于完全失重状态,视重为零,物体本身受的重力即万有引力并不等于零。

例3.人造地球卫星在轨道上做匀速圆周运动,卫星内物体:(

) A.处于完全失重状态,所受重力为零 B.处于完全失重状态,但仍受重力作用

C.所受的重力是维持它跟随卫星一起做匀速圆周运动所需的向心力 D.处于平衡状态,即所受合外力为零 解:略。

例4.用m表示地球同步通信卫星的质量,h表示它离地面的高度,R表示地球的半径,g表示地球表面处的重力加速度,ω表示地球自转的角速度,则该通信卫星所受地球对它的万有引力的大小等于(

A.0 B.mgR2Rh2

24C.m3Rg

D.mg 解析:在离地心为r处的a向Rg'g这个表达式可以当做推论公式使用,这样

r2解答就显得更加简便。通信卫星受到地球对它的万有引力的大小

mR2gRFmg'm g2RhRhmRg2232由FRhmRh得:Rh2R2g224,则Fm3Rg,故正确选项是B、C。

三、人造地球卫星的运行速度和发射速度

教材中提到的第

一、第

二、第三宇宙速度都是指卫星相对于地球的发射速率。若地球表面的空气阻力可以忽略,地球是个质量均匀的理想球体,则当人造地球卫星绕地球表面做匀

M·mmv2速圆周运动时,由万有引力提供向心力,即G,得卫星的运行速度v2rrGMr(M为地球的质量),从式中可以看出,卫星离地面越高,其运行速度越小;卫星离地面越近,其运行速度越大。当卫星近地运行时,轨道半径rR(地球半径),这时其运行速度最大,即为7.9km·s1,因此,人造地球卫星绕地球做匀速圆周运动的最大运行速度为7.9km·s1,也就是说第一宇宙速度是卫星的最大运行速度。那么7.9km·s1是卫星绕地球做匀速圆周运动的最大还是最小的发射速度?教材讲到:“虽然距地面高的卫星运行速度比靠近地面的卫星运行速度小,但是向高轨道发射卫星却比低轨道发射卫星要困难。因为向高轨道发射卫星,火箭要克服引力做更多的功。”具体可以这样来分析: 当一质量为m的卫星以速度v绕质量为M的地球做半径为r的圆周运动,如以无穷远处作为零势能点,则它的动能和势能分别为:

Ek12Mmmv,EpG 2rM·mmv2M2,vG又因G

rrr2所以EkGMm,卫星的总能量 2rMmMmMmGG 2rr2rEEkEpG由以上推导可见,卫星飞得越高,其速度越慢,但是它的总能量却越大,这是发射高轨道卫星比较困难的原因之一。故7.9 km/s是人造卫星的最小发射速度。

例5.关于第一宇宙速度,下面说法中正确的是(

) A.它是人造卫星绕地球飞行的最小速度 B.它是近地圆轨道上人造卫星的运行速度 C.它是卫星在椭圆轨道上运行时在近地点的速度

D.它又叫环绕速度,即绕地球做圆轨道运行的卫星的速度都是第一宇宙速度 解析:该题看似简单,但由于学生往往概念不清而出错。第一宇宙速度即7.9km·s1是一个特定的数值,是人造地球卫星绕地球做圆周运动的最大运行速度。由上面的概念可知,卫星做圆周运动时,离地越高,其运行速度越小,并不是绕地球做圆轨道运行的卫星速度都是第一宇宙速度。如果人造卫星进入地面附近的轨道速度大于7.9km·s1,而小于112.km·s1,它绕地球运动的轨道就不是圆,而是椭圆。因此,该题的正确选项是B。

编者按:所谓近地圆轨道是指地球为理想球体,地球没有大气层的情况下紧贴地面的圆轨道。

第13篇:《曲线运动》复习课教案

《曲线运动》复习课教案

奉化武岭中学 江财波 (315502) 教学目标:

一、知识目标:理清本章的知识结构,让学生理解曲线运动是一种变速运动,知道物体做曲线运动的条件;知道运动的合成与分解都遵守平行四边形定则;掌握典型的曲线运动――平抛运动和圆周运动运动。

二、能力目标:通过物体做曲线运动的条件的分析,提高学生能抓住要点对物理现象技术分析的能力;使学生能够熟练使用平行四边形法则进行运动的合成和分解; 通过平抛运动的研究方法的学习,使学生能够综合运用已学知识,来探究新问题。

三、德育目标:,使学生明确物理中研究问题的一种方法,将曲线运动分解为直线运动。 通过平抛的理论推证和实验证明,渗透实践是检验真理的标准。

教材地位:将加深对速度、加速度关系及牛顿运动定律的理解,同时为复习万有引力等

内容做好必要的准备。

重 点:运动的合成与分解、平抛运动及匀速圆周运动的运动规律。 难 点:运动的合成与分解。

教学方法:复习、讲解、归纳、推理法 教学过程:

(一)、新课的导入 (点击高考):近几年高考对平抛运动、圆周运动运动的考查年年都有,平抛运动、圆周运动还往往与电场力、洛仑兹力联系起来进行考查。 (本章结构):第一节介绍了曲线的特点及物体做曲线的条件,第二节介绍了研究曲线运动的基本方法――运动的合成与分解,在此基础上第三节研究了最常见的曲线运动――平抛运动。第

四、

五、

六、七节内容研究了另一种曲线运动――匀速圆周运动。(本章复习安排):这节课先把本章的知识点疏理一下,从下节课开始再深入研究运动的合成与分解、平抛运动及匀速圆周运动。

(二)、新课教学

本节课的学习目标:理解曲线运动是一种变速运动,知道物体做曲线运动的条件;知道运动的合成与分解都遵守平行四边形定则;掌握典型的曲线运动――平抛运动及匀速圆周运动的规律。

学习目标完成过程: 1、曲线运动:

提问:①我们来回顾一下物体做曲线运动的时候,和直线运动相比,它的运动轨迹有何不同呢?

②速度方向有何不同?如何确定做曲线运动物体在任意时刻的速度方向?

③曲线运动可不可能是速度恒定的运动?

(1) 特点:轨迹是曲线;速度(方向:该点的曲线切线方向)时刻在变;曲线运动一定是变速运动。

提问:④什么情况下物体做曲线运动呢?

(2)条件: F合与V0不在同一条直线上(即a与v0不在同一条直线上)

特例① F合力大小方向恒定――匀速曲线运动(如平抛运动) ②F合大小恒定,方向始终与v垂直――匀速圆周运动 提问:⑤如何研究做曲线物体的运动呢?

2、运动的合成与分解 例1(见第一册物理书,第83页)在长约80cm~100cm一端封闭的玻璃管中注满清水,水中放一个红蜡做成的小圆柱体R(圆柱体的直径略小于玻璃管的内径,轻重大小适宜,使它在水中大致能匀速上浮)。将玻璃管的开中端用胶塞塞紧(如图甲)。将此玻璃客紧贴黑板竖直倒置(如图乙),红蜡块R就沿玻璃管匀速上升,做直线运动。红蜡块R由A运动到B,它的位移是AB,记下它由A运动到B所用的时间。

然后,将玻璃管竖直倒置,在红蜡块上升的同时将玻璃管水平向右匀速移动,观察红蜡块的运动,将会看出它是斜向右上方运动的,经过相同的时间,红蜡块将沿直线AC到达C。这时它的位移是AC(如图丙)

红蜡块可以看成同时参与了下面两个运动:在玻璃管中竖直向上运动(由A到B)和随玻璃管水平向右的运动(由A到D)。红蜡块实际发生的运动(由A到C)是这两个运动合成的结果。

提问:①红蜡烛什么方向的运动是分运动?什么方向的运动是合运动?

②什么叫运动的合成?什么叫运动的分解?

③合运动和分运动有什么关系?

④运动的合成和分解遵循什么规则?

(2)关系:等时性、独立性、等效性 (3)遵循平行四边形定则

特例 ①分运动在同一直线上,矢量运算转化为代数运算

如竖直上抛运动:

②先正交分解后合成:

过渡:现在我们来研究最常见的一种曲线运动――平抛运动。 3、平抛运动

提问:①什么样的运动是平抛运动呢?(沿水平方向丢出一支粉笔头) (1)定义:v0水平,只受重力作用的运动

性质:加速度为g的匀变速曲线运动 提问:②它的运动轨迹为什么是曲线?

(v0与g不在同一条直线上) 提问:③这一运动有何特点?

(2)特点:水平方向不受外力,做匀速直线运动;在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。

讲述:刚才的分析结果可以用实验证明(见课本87页图5—17),尽管两球在水平方向上的运动不同,但它们在竖直方向上的运动是相同的。得到平抛运动在竖直方向上是自由落体运动,水平方向的速度大小并不影响平抛物体在竖直方向上的运动。同时可见,平抛小球在相等时间内水平方向前进的距离是相等的。得到平抛运动的水平分运动是匀速的,且不受竖直方向的运动的影响。即各分运动是独立的。

过渡:既然平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,我们就可以分别算出平抛物体在任一时刻t的位置坐标x和y以及任一时刻t的水平分速度vx和竖直分速度vy (3)规律

方向 :tanθ= ②位移x=vot y= 合位移大小:s= 方向:tanα= ③时间由y=得t=(由下落的高度y决定)

④竖直方向vo=0匀变速运动,匀变速直线运动的一切规律在竖直方向上都成立。 过渡:下面我们来研究另一种最常见的一种曲线运动――匀速圆周运动 4、匀速圆周运动

提问:①什么样的运动是匀速圆周运动呢?

(1)定义:做圆周运动的质点,如果在相等时间里通过的圆弧长度相等(如电风扇叶片上每一点的运动)

提问:②电风扇打到1档和打到2档时叶片转动的快慢不同,用什么物理量来描述匀速圆周运动的快慢呢?

(2) 描述匀速圆周运动快慢的物理量

①线速度:大小v= ;方向在圆周的切线上;单位 : m/s 提问:匀速圆周运动的速度是恒定的吗? ②角速度:大小ω= ; 单位 : rad/s ③周期T:运动一周的时间 单位 : s ④ 频率f=:每秒钟转过的圈数 单位 :HZ

v、ω、T、f之间的关系:

v= 过渡:既然匀速圆周运动是变速运动,则它必有加速度,合外力必不为零。做匀速圆周运动的物体所受的合外力有何特点呢? (3)向心力:大小

方向:总是指向圆心(时刻在变) (4)向心加速度:大小

方向:总是指向圆心(也总是在变)

(5)匀速圆周运动的性质:v的大小不变而方向时刻在变化;a的大小不变而方向时刻也在变,是变加速曲线运动。

(三)、小结

F等于0:匀速 直线:F、v在同一直线上

F不等于0:变速(同向加速,反向减速)

曲线:F、v不在同一直线上 F(大小恒定)垂直v:匀速圆周运动

一般:v大小方向均变(特例:平抛运动)

(四)、巩固练习

1、两个匀变速直线运动的合运动可能是怎样的运动?

2、树枝上的一只松鼠看到一猫人正在用枪口对准它,为了逃脱即将来临的厄运,想让自己落到地面上逃走,但是就在它掉离树枝的瞬间子弹恰好射出枪口,问松鼠能否逃脱被枪杀的厄运?

3、杂技演员表演“水流星”节目时,当杯口朝下时,水也不会从杯里洒出来,请你解释为什么?

(五)、作业:导与练

(六)板书设计:

第14篇:高一物理《曲线运动》教案

教学目标

知识目标

1、知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上.2、理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上.

能力目标

培养学生观察实验和分析推理的能力.情感目标

激发学生学习兴趣,培养学生探究物理问题的习惯.

教学建议

教材分析

本节教材主要有两个知识点:曲线运动的速度方向和物体做曲线运动的条件.教材一开始提出曲线运动与直线运动的明显区别,引出曲线运动的速度方向问题,紧接着通过观察一些常见的现象,得到曲线运动中速度方向是时刻改变的,质点在某一点(或某一时刻)的速度方向是曲线的这一点(或这一时刻)的切线方向.再结合矢量的特点,给出曲线运动是变速运动.关于物体做曲线运动的条件,教材从实验入手得到:当运动物体所受合外力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动.再通过实例加以说明,最后从牛顿第二定律角度从理论上加以分析.教材的编排自然顺畅,适合学生由特殊到一般再到特殊的认知规律,感性知识和理性知识相互渗透,适合对学生进行探求物理知识的训练:创造情境,提出问题,探求规律,验证规律,解释规律,理解规律,自然顺畅,严密合理.本节教材的知识内容和能力因素,是对前面所学知识的重要补充,是对运动和力的关系的进一步理解和完善,是进一步学习的基础.

教法建议

“关于曲线运动的速度方向”的教学建议是:首先让学生明确曲线运动是普遍存在的,通过图片、动画,或让学生举例,接着提出问题,怎样确定做曲线运动的物体在任意时刻速度的方向呢?可让学生先提出自己的看法,然后展示录像资料,让学生总结出结论.接着通过分析速度的矢量性及加速度的定义,得到曲线运动是变速运动.

“关于物体做曲线运动的条件”的教学建议是:可以按照教材的编排先做演示实验,引导学生提问题:物体做曲线运动的条件是什么?得到结论,再从力和运动的关系角度加以解释.如果学生基础较好,也可以运用逻辑推理的方法,先从理论上分析,然后做实验加以验证.教学设计方案

教学重点:曲线运动的速度方向;物体做曲线运动的条件

教学难点:物体做曲线运动的条件

主要教学过程设计:

一、曲线运动的速度方向:

(一)让学生举例:物体做曲线运动的一些实例

(二)展示图片资料

1、上海南浦大桥

2、导弹做曲线运动

3、汽车做曲线运动

(三)展示录像资料:l、弯道上行驶的自行车

通过以上内容增强学生对曲线运动的感性认识,紧接着提出曲线运动的速度方向问题:

(四)让学生讨论或猜测,曲线运动的速度方向应该怎样?

(五)展示录像资料2:火星儿沿砂轮切线飞出 3:沾有水珠的自行车后轮原地 运转

(六)让学生总结出曲线运动的方向

(七)引导学生分析推理:速度是矢量→速度方向变化,速度矢量就发生了变化→具有加速度→曲线运动是变速运动.二、物体做曲线运动的条件:

[方案一]

(一)提出问题,引起思考:沿水平直线滚动的小球,若在它前进的方向或相反方向施加外力,小球的运动情况将如何?若在其侧向施加外力,运动情况将如何?

(二)演示实验;钢珠在磁铁作用下做曲线运动的情况,或钢珠沿水平直线运动之后飞离桌面的情况.(三)请同学分析得出结论,并通过其它实例加以巩固.

(四)引导同学从力和运动的关系角度从理论上加以分析.

[方案二]

(一)由物体受到合外力方向与初速度共线时,物体做直线运动引入课题,教师提出问题请同学思考:如果合外力垂直于速度方向,速度的大小会发生改变吗?进而将问题展开,运用力的分解知识,引导学生认识力改变运动状态的两种特殊情况:

1、当力与速度共线时,力会改变速度的大小;

2、力与速度方向垂直时,力只会改变速度方向.

最后归结到:当力与初速度成角度时,物体只能做曲线运动,确定物体做哪一种运动的依据是合外力与初速度的关系.

(二)通过演示实验加以验证,通过举生活实例加以巩固:

展示课件三,人造卫星做曲线运动,让学生进一步认识曲线运动的相关知识.

课件2,抛出的手榴弹做曲线运动,加强认识.

探究活动

观察并思考,现实生活中物体做曲线运动的实例,并分析物体所受合外力的情况与各点速度的关系.

第15篇:曲线运动:高一寒假作业答案

曲线运动:高一寒假作业答案2018

高中物理与初中物理学习的难易程度是不一样的,小编准备了高一寒假作业答案2015,希望你喜欢。

一、选择题(本题共6道小题)

1.下列说法中正确的是()

A.物体在恒力作用下不可能作曲线运动

B.物体在变力作用下一定作曲线运动

C.曲线运动一定是变速运动

D.曲线运动一定是变加速运动

2.在质量为M的电动机飞轮上,固定着一个质量为m的重物,重物到轴的距离为R,如图所示,为了使电动机不从地面上跳起,电动机飞轮转动的最大角速度不能超过()

A.B.C.D.3.如图有一空心圆锥开口向上放置着,圆锥绕竖直方向的中心轴匀速转动,在光滑的圆锥内表面有一物体m与壁保持相对静止,则物体m所受的力为()

A.重力、弹力、下滑力,共三个力 B.重力、弹力、共两个力 C.重力、弹力、向心力,共三个力 D.重力、弹力、离心力,共三个力 4.船在静水中的速度是1m/s,河岸笔直,河宽恒定,河水流速为3m/s,以下说法正确的是()

A.因船速小于流速,船不能到达对岸

B.船能沿直线过河

C.船可以垂直过河

D.船过河的最短时间是一定的

5.如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内做完整的圆周运动,则下列说法中正确的是()

A.小球运动到最高点时所受的向心力不一定等于重力

B.小球在最高点时绳子的拉力不可能为零

C.小球运动到最高点的速率一定大于

D.小球经过最低点时绳子的拉力一定大于小球重力

6.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r

1、r

2、r3,若甲轮匀速转动的角速度为,三个轮相互不打滑,则丙轮边缘上各点的向心加速度大小为()

A.B.C.D.

二、实验题(本题共2道小) 7.在研究物体做平抛运动时,应通过多次实验确定若干个点,描绘出平抛运动的轨迹.

①在实验中的下列操作正确的是.

A.实验中所用斜槽末端的切线必须调到水平

B.每次实验中小球必须由静止释放,初始位置不必相同

C.每次实验小球必须从斜槽的同一位置由静止释放,所用斜槽不必光滑

D.在实验之前,须先用直尺在纸上确定y轴方向

②实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图中y﹣x2图象能说明平抛小球运动轨迹为抛物线的是.

8.某同学在研究平抛物体的运动的实验中,只记下斜槽末端重锤线y的方向,而未记下斜槽末端的位置O,根据测得的一段曲线,从中任取两点A和B。如图所示,测得两点离y轴的距离分别为x1和x2,并测得两点间的高度差为h,则平抛运动的初速度

v0= 。

三、计算题(本题共3道小题) 9.从地面上方某点,将一小球以10m/s的初速度沿水平方向抛出,小球经过1s落地,不计空气阻力,取g=10m/s2.求小球的位移和落地速度.

10.(计算)(2012春重庆校级期末)如图所示,让摆球从图中的A位置由静止开始下摆,正好摆到最低点B位置时线被拉断.设摆线长l=1.6m,悬点到地面的竖直高度为H=6.6m,不计空气阻力,求:

(1)摆球落地时的速度的大小.

(2)落地点D到C点的距离(g=10m/s2).

11.(计算)如图所示的皮带传动装置,主动轮上两半径分别为3r和r,从动轮的半径为2r,A、B、C分别为轮缘上的三点,设皮带不打滑.试求:

(1)A、B、C三点的角速度之比.

(2)A、B、C三点的线速度之比.

试卷答案

1.C物体做曲线运动的条件;曲线运动

解:A、物体做曲线运动的条件是合力与速度不在同一条直线上,合外力大小和方向不一定变化,如平抛运动,所以A错误. B、当力的方向与速度的方向在一条直线上时,物体可以做匀加速或者匀减速运动,不一定是曲线运动,所以B错误.

C、既然是曲线运动,它的速度的方向必定是改变的,所以曲线运动一定是变速运动.

D、当受到的力是恒力时,就是匀变速运动,如平抛运动,所以D错误.

2.:重物转到飞轮的最高点时,电动机刚要跳起时,重物对飞轮的作用力F恰好等于电动机的重力Mg,即F=Mg.

以重物为研究对象,由牛顿第二定律得

Mg+mg=m2R,解得=故选B

3.解:物体m在水平面内做匀速圆周运动,受到重力和圆锥内表面的弹力共两个力,两个力的合力提供向心力,故B正确,ACD错误.故选B

4.解:A、尽管船的静水速度小于河水速度,仍能到达河对岸,只是不能到达正对岸,选项A错误.

B、船在静水中的速度恒定,河水的速度也恒定,所以,船的实际运动时直线运动,选项B正确.

C、因船的静水速度小于河水的速度,所以船不能垂直渡河.选项C错误.

D、当船头始终指向河对岸时,船渡河的时间最短,所以船过河的最短时间是一定的,选项D正确.故选:BD

5.解:A、小球在圆周最高点时,向心力可能为重力,也可能是重力与绳子的合力,取决于小球的瞬时速度的大小,故A正确.

B、小球在圆周最高点时,满足一定的条件可以使绳子的拉力为零,故B错误.

C、小球刚好能在竖直面内做圆周运动,则在最高点,恰好由重力提供向心力时,有:mg=m,v=,故C错误.

D、小球在圆周最低点时,具有竖直向上的向心加速度,处于超重状态,根据牛顿第二定律得知,拉力一定大于重力,故D正确.故选:AD

6.解:甲丙的线速度大小相等,根据a=知甲丙的向心加速度之比为r3:r1,甲的向心加速度a甲=r12,则a丙=.故A正确,B、C、D错误.故选:A

7.解:(1)AB研究平抛物体的运动的实验,保证小球做平抛运动必须通过调节使斜槽的末端保持水平,因为要画同一运动的轨迹,必须每次释放小球的位置相同,且由静止释放,以保证获得相同的初速度,故A正确,B错误;

C、每次实验小球必须从斜槽的同一位置由静止释放,而斜槽不必一定要光滑,故C正确;

D、在实验之前,须先用重锺,来确定纸上y轴方向,故D错误;

(2)物体在竖直方向做自由落体运动,y=gt2;水平方向做匀速直线运动,x=vt;

联立可得:y=, 因初速度相同,故为常数,故y﹣x2应为正比例关系,故C正确,ABD错误;

故选::①AC;②C.8.

9.解:小球平抛运动,由平抛运动公式:

(1)竖直方向:=水平方向:x=v0t=101m=10m

落地位移时的位移:,

位移与水平方向夹角为,.

(2)落地时竖直方向速度:vy=gt=101m/s=10m/s

落地速度:

落地速度与水平方向夹角为,.

答:(1)小球的位移为m,方向与水平方向的夹角arctan

(2)落地的速度为m/s,方向与水平方向的夹角为45.

10.机械能守恒定律应用专题

解:(1)小球从A运动到B的过程中受重力和线的拉力,只有重力做功;球从B到D做平抛运动,也只有重力做功,故小球从A点到D的全过程中机械能守恒.

取地面为参考平面.则得:

mg(H﹣lcos60)=mvD2

得:vD===10.8m/s

(2)小球从A到B的过程中,根据机械能守恒定律得:

mgl(1﹣cos60)=

得:vB===4m/s

小球从B点开始做平抛运动,由平抛运动的规律,在竖直方向上有:

H﹣l=,

得:t==s=1s;

水平方向上,落地点D到C点的距离为:

x=vBt=41m=4m

答:(1)摆球落地时的速度的大小是10.8m/s.

(2)落地点D到C点的距离是4m.

11.(1)A、B、C三点的角速度之比2:2:1.

(2)A、B、C三点的线速度之比3:1:1

(1)A、B共轴转动,角速度相等,B、C两点功传送带传动,则线速度大小相等,根据v=r知,B:C=rC:rB=2:1,所以A:B:C=2:2:1. (2)A、B共轴转动,角速度相等,vA:vB=rA:rB=3:1,B、C两点的线速度大小相等,则v A:vB:vC=3:1:1.

答:(1)A、B、C三点的角速度之比2:2:1.

(2)A、B、C三点的线速度之比3:1:1

高一寒假作业答案2015就为大家介绍到这里,希望对你有所帮助。

第16篇:高中物理新课标人教版必修2优秀教案: 多媒体教学设计曲线运动

多媒体教学设计

导入新课

在实际生活中,普遍发生的是曲线运动,如抛出的粉笔头(演示),那么曲线运动都有哪些特点呢?本节课我们就来学习这个问题.推进新课

一、曲线运动的速度方向

1.预备知识:何为曲线的切线?

打开“5.1曲线运动.ppt”文件,并切换到第二屏,如图

点击动画中的“观看”按钮,动态显示切线的渐变形成过程.2.曲线运动的速度方向

把屏幕切换到第三屏,如图

先让学生根据图中所给问题进行思考,然后再利用下面的动画进行演示,最后展示给出问题的结论.3.生活实例

把屏幕切换到第四屏,如图

让学生观察一些生活中的曲线运动,并判断它们的运动方向.点击链球中的“观看”按钮,可以动态再现运动员的掷球过程.

屏幕切换到第五屏,给出一个练习题,如图

先让学生画出各点的速度方向,然后再给出正确的答案.

二、物体做曲线运动的条件 1.屏幕切换到第六屏,如图

根据图中所给问题,先让学生自己利用所给器材完成实验探究,并总结出实验结论.然后再分别点击动画中的“直线1”“直线2”和“曲线”三个按钮,动态展示三种情况下的运动过程,如图

最后给出结论与学生的结论进行对照.分析论证:①直线加速:F的方向与v的方向相同.②直线减速:F的方向与v的方向相反.③曲线运动:F的方向与v的方向成一定夹角.结论:当物体所受的合力的方向与它的速度方向在同一直线时,物体做直线运动;当物体所受合力的方向与它的速度方向不在同一直线上时,物体就做曲线运动.2.把屏幕切换到第七屏,给出例题,如图

先是给出例题的内容,让学生思考所给问题并给出解答,然后再点击屏幕给出答案.课堂小结

同学们根据自身特点,各自进行.1.独立归纳,应用自己熟悉的方式并能找出重点内容.2.讨论归纳,列出知识的框架图,说明知识的认知过程.3.结合提纲,知识重现,小结归纳.

上图先给出提纲,让学生自己归纳后再给出内容.课堂训练

先让学生尝试计算,后点击给出答案

注明:本课所用PPT课件及相关资料全部来自“志鸿优化网”(http://www.daodoc.com),文件解压后就可使用,具体链接地址为:http://www.daodoc.com/?action=copyright!show&id=954

第17篇:《曲线运动》一章的复习教案

《曲线运动》一章的复习课教案

1.理解平抛运动的特点和规律,熟练掌握分析平抛运动的方法。2.会描述匀速圆周运动,知道向心加速度。

3.能用牛顿第二定律分析匀速圆周运动的向心力,能够分析生活和生产中的离心现象。4.关注抛体运动和圆周运动的规律与日常生活的联系。

重点难点:理解研究曲线运动的合成与分解方法,掌握平抛运动规律,能够应用牛顿运动定律解决圆周运动问题。

教学建议:本章学习了物体做曲线运动的条件以及运动的合成和分解,并研究了两种曲线运动:平抛运动和圆周运动。其实,该章内容是牛顿运动定律在曲线运动中的具体运用。在教学中要通过本节课再次梳理,让学生掌握本章的概念和规律,加深对速度、加速度及其关系的理解,加深对牛顿运动定律的理解,提高应用牛顿运动定律分析和解决实际问题的能力。

曲线运动

主题1:小船渡河

问题:如图甲所示,一条河岸平行的河流,宽度为L,各处水流速度均为v水,船在静水中的速度为v船,现要坐船渡过这条河流。

(1)若要以最短时间过河,应该怎样调整船头方向? (2)若以最短时间过河,渡河的时间是多少?渡河过程船发生的位移是多少? (3)若以最小位移过河,应该怎样调整船头行驶方向?请用图示来表示。 解答:(1) 如图乙所示,船头应垂直于河岸。 (2)渡河最短时间为t=,渡河过程船发生的位移s=v合t=t=。 (3)欲求小船渡河的最小位移,需分v水v船两种情况讨论。

①若v水v船,则v水和v船的合速度不可能垂直指向河岸,小船不能垂直过河。船的实际航线为船的实际速度(合速度v合)方向,则v合、v水和v船构成一个矢量三角形,根据矢量合成法则可知,以v水的末端为圆心、v船大小为半径画圆,由v水的始端指向圆上各点表示的矢量就是合速度v合,如图丁所示。

知识链接:小船渡河问题要点有①渡河时间只取决于垂直于河岸方向的速度,②渡河位移只取决于船的实际速度(合速度)方向。

主题2:圆锥摆模型

问题:圆锥摆的结构特点为在一根质量和伸长可以不计的细线上,系一个可以视为质点的摆球,在水平面内做匀速圆周运动,如图所示。设摆球的质量为m,摆线长为L,与竖直方向的夹角为α,摆球的线速度为v,角速度为ω,周期为T,频率为f。

(1)摆球的向心力和向心加速度各为多少? (2)摆线的拉力多大? (3)摆球运动的周期是多少? 解答:(1)摆球的向心力为F合=ma=mgtan α=m=mω2Lsin α=m()2Lsin α=m(2πf)2Lsin α 向心加速度为a=gtan α==ω2Lsin α=()2Lsin α=(2πf)2Lsin α。 (2)摆线的拉力

有两种基本思路:当α已知时,F=;当α未知时,F==mω2L=m()2L=m(2πf)2L。 (3)摆球的周期

设悬点到圆周运动圆心的距离为h,根据向心力公式有T=2π=2π。 知识链接:圆锥摆的周期公式T=2π,圆锥摆的周期T仅与摆球做圆周运动的圆心到悬点的距离h以及当地重力加速度g有关,与摆球质量、绳长L、摆角α无关。拓展

一、绳子末端速度的分解

1.如图甲所示,用船A拖着车B前进,若船匀速前进,速度为vA,当OA绳与水平方向夹角为θ时,则: (1)车B运动的速度vB多大? (2)车B是否做匀速运动? 问1:以小船为研究对象,小船的运动为合运动,其运动方向朝什么方向? 答1:水平向右。

问2:小船的实际运动产生哪两种作用效果? 答2:一是使绳子运动,沿OA方向伸长;二是以O点为圆心的转动。 问3:车B的速度与绳子运动的速度是否相等? 答3:相等。

【解析】船的前进速度vA产生了绳子的下拉速度v1(沿绳的方向)和绳子以滑轮为轴的转动速度v2两个分速度,车前进的速度vB取决于由于船前进而使OB绳变短的速度。

(1)把vA分解为一个沿绳子方向的分速度v1和一个垂直于绳的分速度v2,如图乙所示,所以车前进的速度vB应等于vA的分速度v1,即vB=v1=vAcos θ。

(2)当船匀速向前运动时,θ角逐渐减小,车速vB将逐渐增大,因此,车B不做匀速运动。 【答案】(1)vAcos θ (2)不做匀速运动

【点评】物体间通过绳连接而使运动互相关联的运动被称为牵连运动,这类问题的特征是在绳的方向上各点的速度大小相等,解题时一般按以下步骤进行。

第一步:先确定合速度,物体的实际运动速度就是合速度。 第二步:确定合运动的两个实际效果。一是沿绳方向的伸长或收缩运动,改变速度的大小;二是垂直于绳方向的旋转运动,改变速度的方向。

第三步:按平行四边形定则进行分解,画好运动矢量图。

拓展

二、抛物线方程的应用

2.如图甲所示,排球场总长为18 m,设球网高度为2 m,运动员站在离网3 m的线上,正对网前跳起,将球水平击出。

(1)若击球点在3 m线的正上方高度为2.5 m处,问击球速度在什么范围内才能够使得球既不触网也不越界? (2)若击球点在3 m线的正上方的高度小于某个值,无论水平击球速度多大,球不是触网就是越界,试求这一高度。

问1:以抛出点为原点,建立直角坐标系,以时间t为参数,平抛运动的位移方程是怎样的? 答1:x=v0t,y=gt2。

问2:如果消去时间t,得到y与x之间的关系式是怎样的? 答2:如果消去时间t,得到抛物线方程y=x2。

【解析】(1)以抛出点O为原点,建立直角坐标系,如图乙所示

当击球速度较大时,可以保证球不会触网,但可能出界,设刚好压界时击球速度是v1,则抛物线方程为y=x2

边界点P在这条抛物线上,由题意可知,P点的坐标为P(12,2.5),代入方程即可解得v1=12 m/s 当击球速度较小时,可以保证球不会出界,但可能触网 设刚好触网时击球速度是v2,则抛物线方程为y=x2

网的最高点Q在这条抛物线上,由题意可知,Q点的坐标为 Q (3,0.5),代入方程解得v2=3 m/s 因此,击球速度3 m/s

这就是说,网的最高点Q,以及边界点P同在一条抛物线上, P、Q两点坐标为P(12,h),Q(3,h-2) 将P、Q两点坐标代入可得h=×122 , h-2=×32,二式相除,消去v0,解得h=2.13 m 因此,当击球高度小于2.13 m时,球不是触网就是越界。 【答案】(1)3 m/s

拓展

三、对类平抛运动问题的分析

3.如图所示,光滑斜面长为b,宽为a,倾角为θ,一物块沿斜面左上方顶点P水平射入,而从右下方顶点Q离开斜面,求入射初速度。

问1:小球在斜面上受几个力的作用? 答1:受重力和支持力两个力的作用。 问2:小球所受的合力大小是多少,方向如何? 答2:合力为F=mgsin θ,方向沿斜面向下。

问3:小球所受合力的方向与初速度方向具有怎样的关系? 答3:垂直。 问4:能否将小球的运动看作沿初速度方向的匀速直线运动与沿斜面向下的匀加速直线运动的合运动? 答4:能。

【解析】物块在垂直于斜面方向没有运动,物块沿斜面方向上的曲线运动可分解为水平方向上速度为v0的匀速直线运动和沿斜面向下初速度为零的匀加速运动。

在沿斜面方向上:mgsin θ=ma1,得a1=gsin θ 水平方向上的位移:x=a=v0t 沿斜面向下的位移:y=b=a1t2 由上式解得:v0=a。 【答案】a

【点评】初速度不为零,加速度恒定且垂直于初速度方向的运动,我们称之为类平抛运动。 类平抛运动也是命题热点,类平抛运动的处理方法与平抛运动一样,只是加速度a不同而已。在解决类平抛运动问题时,方法完全等同于平抛运动的解法,也是采用运动的合成与分解法。要注意的问题如下: ①需满足的条件为受恒力作用且与初速度的方向垂直。 ②确定两个分运动的速度方向和位移方向,分别列式求解。

拓展

四、竖直面内的圆周运动问题

4.如图所示,半径为R、内径很小的光滑半圆管竖直放置。两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为0.75mg。求a、b两球落地点间的距离。

问1:小球a、b离开A点后做什么运动? 答1:平抛运动。

问2:小球a、b离开A点后的运动时间是否相等? 答2:相等。

问3:a球离开A点前在A点受到的合力大小是多少?方向如何?b球呢? 答3:a球离开A点前在A点受到的合力大小是F合A=mg+3mg=4mg,方向竖直向下。B球受到的合力F合B=mg-0.75mg=0.25mg,方向竖直向下。 【解析】两个小球在最高点时,受重力和管壁的作用力,这两个力的合力作为向心力,离开轨道后两球均做平抛运动,a、b两球落地点间的距离等于它们平抛运动的水平位移之差。

对a球:mg+3mg=m,解得:va= 对b球:mg-0.75mg=m解得:vb=

a、b两球离开A后做平抛运动,落地点间距设为Δx,根据平抛运动规律有 Δx=(va-vb)t 2R=gt2 解得:Δx=3R。 【答案】3R

【点评】竖直平面内的圆周运动是典型的变速圆周运动,这类题的特点:物体做圆周运动的速率时刻在改变,最高点的速率最小,最低点的速率最大。在最低点向心力肯定向上,而重力向下,所以弹力必然向上;在最高点,向心力向下,重力也向

下,但弹力的方向就不能确定了。因此解决这类问题的关键是要分析清楚在最高点或最低点时物体的受力情况,由哪些力来提供向心力,再对此瞬时状态应用牛顿第二定律的瞬时性,有时还要应用牛顿第三定律。很多时候在最高点往往还会出现临界条件,如弹力刚好为零,要注意充分挖掘这些隐含的或临界的条件。

拓展

五、对圆周运动的临界问题的分析

5.如图所示,用细绳一端系着的质量M=0.6 kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=0.3 kg的小球B,A的重心到O点的距离为0.2 m。若A与转盘间的最大静摩擦力为Ff=2 N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围。(g取10 m/s2) 问1:若B处于静止状态,则物体A处于怎样的状态? 答1:A相对转盘静止。

问2:若角速度取最大值,A有离心趋势,此时A受到的静摩擦力沿什么方向? 答2:指向圆心。

问3:若角速度取最小值,A有向心运动趋势,此时A受到的静摩擦力沿什么方向? 答3:背离圆心。 【解析】要使B静止,A必须相对于转盘静止,即A具有与转盘相同的角速度。A需要的向心力由绳的拉力和静摩擦力的合力提供。角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O。

对于B:FT=mg

对于A:FT+Ff=Mr或FT-Ff=Mr 代入数据解得ω1=6.5 rad/s,ω2=2.9 rad/s 所以2.9 rad/s≤ω≤6.5 rad/s。 【答案】2.9 rad/s≤ω≤6.5 rad/s 【点评】对圆周运动中的临界问题的分析与求解方法不只是在竖直平面内的圆周运动中存在,其他许多问题中也有临界问题。对这类问题的求解一般都是先假设某量达到最大、最小的临界情况,然后分析该状态下物体的受力特点,再结合圆周运动的知识,列出相应的动力学方程。

曲线

运动

有临界问题

第18篇:高一物理人教版曲线运动教案

曲线运动教案

1.曲线运动

(1)曲线运动定义:轨迹是曲线的运动。

(2)曲线运动的速度方向和性质:

速度方向就是该点的切线方向,曲线运动的速度方向时刻改变,故曲线运动一定存在加速度,曲线运动一定是变速运动。

(3)物体做直线运动条件:物体所受合外力为零或所受合外力方向和物体运动方向在同一直线上。

(4)物体作曲线运动条件:合外力方向与速度方向不在同一直线上。

2.运动的合成和分解

(1)有关运动的合成和分解的几个概念:

如果某物体同时参与几个运动,那么这物体实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。

合运动的位移叫做合位移;分运动的位移叫分位移。合运动在一段时间内的平均速度叫合速度;分运动在该同一段时间内的平均速度叫分速度。

(2)运动的合成及分解规则:平行四边形定则。

① 合运动一定是物体的实际运动。

② 分运动之间是相互不相干的。

③ 合运动和各分运动具有等时性。

④ 合运动和分运动的位移、速度、加速度都遵守平行四边形定则。

⑤ 特例:

初速为 的匀加速直线运动,可看成是同方向的一个匀速运动和另一个初速为零的匀加速直线运动的合运动。 竖直上抛运动可看成是一个竖直向上的匀速直线运动和另一个自由落体运动的合运动。

两个匀速直线运动合成后一定是匀速直线运动。

不在同一直线上的一个匀速直线运动和一个变速直线运动合成后运动轨迹是曲线(合运动的加速度方向和合运动速度方向不在同一直线上)。

3.平抛运动

(1)平抛运动的定义:水平抛出物体只在重力作用下的运动。

(2)平抛运动性质:是加速度恒为重力加速度g的匀变速曲线运动,轨迹是抛物线。

(3)平抛运动的处理方法:

分解为

结果得

曲线运动

1.曲线运动

(1)曲线运动定义:轨迹是曲线的运动。

(2)曲线运动的速度方向和性质:

速度方向就是该点的切线方向,曲线运动的速度方向时刻改变,故曲线运动一定存在加速度,曲线运动一定是变速运动。

(3)物体做直线运动条件:物体所受合外力为零或所受合外力方向和物体运动方向在同一直线上。

(4)物体作曲线运动条件:合外力方向与速度方向不在同一直线上。

2.运动的合成和分解

(1)有关运动的合成和分解的几个概念:

如果某物体同时参与几个运动,那么这物体实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。

合运动的位移叫做合位移;分运动的位移叫分位移。合运动在一段时间内的平均速度叫合速度;分运动在该同一段时间内的平均速度叫分速度。

(2)运动的合成及分解规则:平行四边形定则。

① 合运动一定是物体的实际运动。

② 分运动之间是相互不相干的。

③ 合运动和各分运动具有等时性。

④ 合运动和分运动的位移、速度、加速度都遵守平行四边形定则。

⑤ 特例:

初速为 的匀加速直线运动,可看成是同方向的一个匀速运动和另一个初速为零的匀加速直线运动的合运动。

竖直上抛运动可看成是一个竖直向上的匀速直线运动和另一个自由落体运动的合运动。

两个匀速直线运动合成后一定是匀速直线运动。

不在同一直线上的一个匀速直线运动和一个变速直线运动合成后运动轨迹是曲线(合运动的加速度方向和合运动速度方向不在同一直线上)。

3.平抛运动

(1)平抛运动的定义:水平抛出物体只在重力作用下的运动。

(2)平抛运动性质:是加速度恒为重力加速度g的匀变速曲线运动,轨迹是抛物线。

(3)平抛运动的处理方法:

注意:运动学公式只适用于直线运动,因此曲线运动要分解成两个直线的分运动后才能应用运动学公式求解。

第19篇:物理②必修5.1《曲线运动》教案

5.1 曲线运动

【教学目标】

1、知道什么是曲线运动。

2、知道曲线运动中速度的方向。3、理解曲线运动是一种变速运动。

4、理解物体做曲线运动的条件是所受合外力方向与速度方向不在一条直线上。【教学重点】

曲线运动中的速度方向和物体做曲线运动的条件。

【 教学难点、

理解并掌握物体做曲线运动的条件。 【课时安排】

1课时 【教学过程】

(一)、引入新课:在实际生活中,飞行的铁饼,导弹,卫星…曲线运动是普遍发生的。曲线运动有什么特点?物体为什么会做曲线运动?本节课我们就来学习这些。

(二)、曲线运动的速度方向

1、提问:曲线运动与直线运动有什么区别?

——运动轨迹是曲线。

——速度方向时刻改变。

2、曲线运动的速度方向

(1)、在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出; (2)、撑开的带有水的伞绕着伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。

总结:曲线运动中速度的方向是时刻改变的,质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。

(3)、推理:

a:速度是矢量,既有大小,又有方向。

b:只要速度的大小、方向中的一个或两个同时变化,就表示速度发生了变化,也就是说具有加速度。

C:曲线运动中速度的方向时刻在改变,所以曲线运动是变速运动。 过渡:那么物体在什么条件下才做曲线运动呢?

(三)、物体做曲线运动的条件

【演示实验】一个在水平面上做直线运动的钢珠,如果从旁边给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。

归纳得到:当运动物体所受合力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动。

【讨论】做曲线运动的物体,其加速度的方向跟它的速度方向是否一致?

对照物体做直线运动的条件:当物体所受的合外力方向跟它的速度方向在同一直线上时,物体做直线运动。

【看书】抛出的石子,飞行的人造卫星为什么做曲线运动? 用牛顿第二定律分析物体做曲线运动的条件:

当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。

如果合力的方向跟速度方向不在同一条直线上,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就做曲线运动。

课堂练习:课本P83练习一(1)、(4)两题学生讨论;(2)、(3)两题课堂练习,并点两名学生在黑板上写出结果。教师评讲。

(四)、巩固练习

物体在力F

1、F

2、F3的共同作用下做匀速直线运动,若突然撤去外力F1,则物体的运动情况是

【C、D】

A、必沿着F1的方向做匀加速直线运动 B、必沿着F1的方向做匀减速直线运动

C、不可能做匀速直线运动

D、可能做直线运动,也可能做曲线运动

(五)、课堂小结

1、运动轨迹是曲线的运动叫曲线运动。

2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向是曲线在这一点的切线方向。

3、当运动物体所受合力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动。

第20篇:曲线运动平抛运动练习

曲线运动平抛运动练习

一、选择题

1、如图所示,平面直角坐标系xOy与水平面平行,在光滑水平面上做匀速直线运动的质点以速度v通过坐标原点O,速度方向与x轴正方向的夹角为α,与此同时给质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy ,则此后 A.因为有Fx,质点一定做曲线运动

B.如果,质点做直线运动

C.如果Fy

D.如果,质点相对原来的方向向x轴一侧做曲线运动

2、如图所示,一物体在水平恒力作用下沿光滑的水平面做曲线运动,当物体从M点运动到N点时,其速度方向恰好改变了90°,则物体从M点到N点的运动过程中,物体动能将 ( ) A.不断增加 B.不断减少 C.先减少后增加 D.先增加后减小

3、若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是

4、如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M.C点与O点距离为l.现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90°角),关于此过程,下述说法正确的是( ) A.重物M做匀速直线运动 B.重物M做匀变速直线运动 C.重物M的最大速度是ωl D.重物M的速度先增大后减小

5、如图所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高3 m的吊环,他在车上和车一起以2 m/s的速度向吊环运动,小朋友抛球时手离地面1.2 m,当他在离吊环的水平距离为2 m时将球相对于自己竖直上抛,球刚好进入吊环,他将球竖直向上抛出时的速度是(g取10 m/s)( ) A.1.8 m/s B.3.2 m/s C.3.6 m/s D.6.8 m/s

6、如图所示,轮滑运动员从较高的弧形坡面上滑到A处时,沿水平方向飞离坡面,在空中划过一段抛物线后,再落到倾角为θ的斜坡上,若飞出时的速度大小为v0则( ) A.运动员落到斜坡上时,速度方向与坡面平行

2B.运动员落回斜坡时的速度大小是

C.运动员在空中经历的时间是D.运动员的落点B与起飞点A的距离是

7、在第16届亚洲运动会中,10米移动靶团体冠军被我国选手获得。右图为简化的比赛现场图,设移动靶移动的速度为v1,运动员射出的子弹的速度为v2,移动靶离运动员的最近距离为d,要想在最短的时间内射中目标,则运动员射击时离目标的距离应该为( )

A. B. C. D.

8、如图所示,一根长为L的轻杆OA,O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个质量为M、高为h的物块上。若物块与地面摩擦不计,则当物块以速度v向右运动时(此时杆与水平方向夹角为θ),小球A的线速度大小为 ( )

A. B. C. D.

9、如图,叠放在水平转台上的物体A、B、C都能随转台一起以角速度ω匀速转动,A、B、C的质量分别为3m、2m、m,A与B、B与转台间的动摩擦因数为μ,C与转台间的动摩擦因数为2μ,A和B、C离转台中心的距离分别为r、1.5r 。设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 A.B对A的摩擦力一定为3μmg

B.B对A的摩擦力一定为4mωr

2C.转台的角速度一定满足:

D.转台的角速度一定满足:

10、如图4-3-15所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的 ( ). A.周期相同 B.线速度的大小相等

C.角速度的大小相等D.向心加速度的大小相等

11、如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是 ( )

A.小球过最高点时,杆所受的弹力可以等于零

B.小球过最高点的最小速度为

C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力不可能小于杆对球的作用力 D.小球过最高点时,杆对球的作用力一定与小球所受重力方向相反

12、用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,如下图(1)所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω变化的图象是图(2)中的(

13、用长为L的细线把质量为m的小球悬挂起来(线长比小球尺寸大得多),悬点O距离水平地面的高度为H。细线承受的张力为球重的3倍时会迅速断裂。现把细线拉成水平状态,然后释放小球,如图所示。对小球的运动以下说法正确的是

A.小球经过最低点时,细绳会断裂;B.小球经过最低点时,细绳不会断裂; C.小球落地点与悬点的水平距离为

2D.小球从开始下落到着地所需的总时间为

14、如图所示,两个半径不同而内壁光滑的半圆轨道固定于地面,一个小球先后从与球心在同一水平高度的A、B两点由静止开始自由下滑,通过轨道最低点时(

) A.小球对两轨道的压力不同 B.小球对两轨道的压力大小均为小球重力大小的2倍 C.此时小球的向心加速度不相等 D.此时小球的向心加速度相等

4

15、如下图所示,小车上有因定支架,支架上用细线拴一个小球,线长为l(小球可看作质点),小车与小球一起以速度υ0沿水平面向左匀速运动,当小车突然碰到矮墙后,车立即停止运动,此后小球升高的最大高度可能是(线未拉断)( ) A.大于 B.小于

C.等于

D.等于2l

二、计算题

16、一条河宽s=100m,水流速度v2=3m/s,船在静水速度v1=5m/s,求:

① 船到达对岸的最短时间tmin

② 船要以最短距离到达对岸,船与河岸的夹角θ ③ 船以最短距离过河的时间为多少

17、如图所示,长为L=1.00m的非弹性轻绳一端系于固定点O,另一端系一质量为m=1.00kg的小球,将小球从O点正下方d=0.40m处,以水平初速度v0向右抛出,经一定时间绳被拉直。已知绳刚被拉直时,绳与竖直方向成53°角,sin53°=0.8,cos53°=0.6,重力加速度g取10m/s。求: (1)小球水平抛出的初速度v0的大小。 (2)小球摆到最低点时绳对小球的拉力大小。

18、如图3所示,一条小船位于200m宽的河正中A点处,从这里向下游100m处有一危险区,当时水流速为4m/s,为了使小船避开危险区沿直线到达上方河岸,小船在静水中的速度至少为多大?

19、跳台滑雪是勇敢者的运动,它是利用依山势特别建造的跳台进行的。运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆。这项运动极为壮观。设一位运动员由山坡顶的A点沿水平方向飞出,到山坡上的B点着陆。如图所示,已知运动员水平飞出的速度为v0 = 20m/s,山坡倾角为θ= 37°,山坡可以看成一个斜面。(g = 10m/s,sin37º= 0.6,cos37º= 0.8)求(1)运动员在空中飞行的时间t(2)AB间的距离

2s

5 参考答案

一、选择题

1、B D

2、C

3、C

4、CD [解析] 由题知,C点的速度大小为vC=ωl,设vC与绳之间的夹角为θ,把vC沿绳和垂直绳方向分解可得,v绳=vCcosθ,在转动过程中θ先减小到零再反向增大,故v绳先增大后减小,重物M做变加速运动,其最大速度为ωl,C、D正确.

5、D [解析] 球在水平方向做匀速运动,有x=v0t,在竖直方向做竖直上抛运动,有vt-gt2=H-h,将x=2 m,v0=2 m/s,H=3 m,h=1.2 m,g=10 m/s2代入解得v=6.8 m/s,选项D正确.

6、CD

7、B

8、A

9、C

10、答案 AC

11、AC

12、C[解析]小球离开锥面前,其中,θ表示悬线与竖直方向的夹角,L表示摆长。小球离开锥面后,

。可知C项正确。

13、A C。

14、D

15、B、C、D

二、计算题

16、20s;53º;25s

17、(1)当绳被拉直时,小球下降的高度h=Lcosθ-d=0.2m据h=gt/2,可得

2t=0.2s,所以v0=Lsinθ/t=4m/s(2)当绳被拉直前瞬间,小球竖直方向上的速度 vy=gt=2m/s,绳被拉直后球沿绳方向的速度立即为零,沿垂直于绳方向的速度为vt= v0cos53º- vysin53º=0.8m/s,垂直于绳向上。此后的摆动到最低点过程中小球机械能守恒:得:T=18.64N

在最低点时有:代入数据可解

18、【解析】设小船在静水中的最小速度为v1,可通过作圆法得到,如图4所示,显然,当水速(设为v2)和船速两者方向垂直时,船在静水中的速度最小 v1=v2sinθ①

由几何关系得tanθ=解①②得v1=2m/s.

θ=30°②

19、(1)设A到B的竖直高度为,有有,几何关系, ,得

, A到B的水平距离为,。(2)有

所以,

曲线运动教学设计
《曲线运动教学设计.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档