人人范文网 范文大全

离散数学证明题

发布时间:2020-03-03 21:52:56 来源:范文大全 收藏本文 下载本文 手机版

证明题

1.用等值演算法证明下列等值式:

(1)┐(PQ)(P∨Q)∧┐(P∧Q)

(2)(P∧┐Q)∨(┐P∧Q)(P∨Q)∧┐(P∧Q)

证明:(1)

┐(PQ)

┐((P→Q)∧(Q→P))

┐((┐P∨Q)∧(┐Q∨P))

(P∧┐Q)∨(Q∧┐P)

(P∨Q)∧(P∨┐P)∧(┐Q∨Q)∧(┐P∨┐Q)

(P∨Q)∧┐(P∧Q)

(2)

(P∧┐Q)∨(┐P∧Q)

(P∨┐P)∧(P∨Q)∧(┐Q∨┐P)∧(┐Q∨Q)

(P∨Q)∧┐(P∧Q)

2.构造下列推理的证明:

(1)前提:(PQ)(RS),(QP)R,R

前提:PQ。

(2)前提:Q →P, Q  S , S  M , M∧R前提:结论:P∧Q

(3)前提:P →(Q → R) , S → P , Q

结论:S →R(4)前提:(P∨Q) →( R∧S), (S∨M) → U结论:P →U(5)前提:P →┐Q,┐R∨Q ,R∧┐S

结论:┐P(6)前提:P∨Q , P →R, Q → S结论:R∨S

证明:(1)

① R前提引入

② (QP)R前提引入

③ QP①②析取三段论

④ RS①附加规则

⑤ (PQ)(RS)前提引入

⑥ PQ④⑤拒取式

⑦ (PQ)(QP)③⑥合取规则

⑧ PQ⑦置换规则

(2)

① M∧R前提引入

② M①化简规则

③ S  M前提引入

④ (S → M) ∧(M → S)③置换

⑤ M → S④化简规则

⑥ S② ⑥假言推理

⑦ Q  S前提引入

⑧ (S → Q) ∧(Q → S)⑦ 置换

⑨ S → Q⑧化简规则

⑩ Q⑥ ⑨假言推理

(11) Q →P前提引入

(12) P

(13) P∧Q

(3)

① S → P

②S

③ P

④ P →(Q → R)

⑤ Q → R

⑥ Q

⑦ R

(4)

① P

② P∨Q

③ (P∨Q) →( R∧S)

④ R∧S

⑤ S

⑥ S∨M

⑦ (S∨M) → U

⑧ U

(5)

① P

② P →┐Q

③ ┐Q

④ ┐R∨Q

⑤ ┐R

⑥ R∧┐S

⑦ R

⑧ R∧┐R

(6)⑩ (11)假言推理⑩ (12) 合取前提引入附加前提引入① ②假言推理 前提引入③④ 假言推理前提引入⑤⑥假言推理附加前提引入①附加规则前提引入②③ 假言推理④化简规则⑤附加规则前提引入⑥ ⑦假言推理结论否定引入前提引入① ②假言推理前提引入③④析取三段论前提引入⑥化简规则⑤⑦合取

① ┐(R∨S)结论否定引入

② ┐R∧┐S①置换规则

③ ┐R②化简规则

④ P →R前提引入

⑤ ┐P③④拒取

⑥ ┐S②化简规则

⑦ Q → S前提引入

⑧ ┐Q⑥ ⑦拒取

⑨ ┐P∧┐Q⑤⑧合取

⑩ ┐(P∨Q )⑨置换规则

(11) P∨Q前提引入

(12) ┐(P∨Q )∧(P∨Q )⑨11 合取

3.在命题逻辑中构造下列推理的证明:

(1)如果今天是星期六,我们就要到颐和园或圆明园去玩。如果颐和园游人太多,我们就不到颐和园去玩。今天是星期六。颐和园游人太多。所以我们到圆明园玩。

(2)明天是晴天,或是雨天;若明天是晴天,我就去看电影;若我看电影,我就不看书。所以,如果我看书,则明天是雨天。

(3)如果小王是理科学生,他必学好数学;如果小王不是文科生,他必是理科生;小王没学好数学。所以,小王是文科生。

解:(1)首先将命题符号化:

设P: 今天是星期六;Q: 我们到颐和园去玩;R:我们到圆明园去玩;S:颐和园游人多。

前提:P →(Q∨R) , S → ┐Q , P , S

结论:R证明:

① ②假言推理

④ P前提引入

⑤ P →(Q ∨ R )前提引入⑥ Q ∨ R④⑤假言推理 ⑦ R③⑥析取三段论

(2)首先将命题符号化:令P:明天是晴天,

Q:明天是雨天,

R:我看电影,

S:我看书。 ① S → ┐Q前提引入②S前提引入③ ┐Q

前提:P∨Q, P→R, R→┐S

结论: S→Q

证明:

① S

② R→┐S

③┐R

④ P→R

⑤ ┐P

⑥ P∨Q 附加前提引入 前提引入 ①②拒取式 前提引入 ③④拒取式 前提引入

⑦ Q⑤⑥析取三段论

(3)首先将命题符号化:

令P:小王是理科生,

Q:小王是文科生,

R:小王学好数学。

前提:P→R, ┐Q→P, ┐R

结论:Q

证明:

① P→R

② ┐R

③ ┐P

④ ┐Q→P

⑤ Q

6.证明: 前提引入 前提引入 ①②拒取式 前提引入 ③④拒取式

①A-B=A A∩B=Φ 。

②(A-B)-C = (A-C)-(B-C)

证明:①

必要性。假设A∩B≠Φ,必有x属于A∩B,则x属于A同时属于B,即x属于A但是x不属于A-B。与A-B=A矛盾。

充分性。显然A-BA。任取x∈A,则如果x属于B,则x属于A∩B,与A∩B=Φ矛盾。因此x必不属于B,即x属于A-B。从而证明了AA-B。命题得证。 ②

∵(A-B)-C = (A∩~B)∩~C

= A∩~B∩~C;

(A-C)-(B-C)

= (A∩~C)∩~(B∩~C)

= (A∩~C)∩(~B∪C)

= (A∩~C∩~B)∪(A∩~C∩C)

= (A∩~C∩~B)∪Φ

= A∩~B∩~C.

∴(A-B)-C = (A-C)-(B-C)

7.设R是A上的二元关系,试证:R是传递的当且仅当R2R,其中R2表示RR。

(1)设R传递,(x,y)∈R2,t∈A使

,∈R(因为R2=R R)

∵R传递 ∴∈R

∴R2 R

(2)设R2R,若,∈R

则∈R2,

∵R2 R,∴∈R。 即R传递。

8.设A是集合,R1,R2是A上的二元关系,证明:

若R1,R2是自反的和对称的,则R1R2也是自反的和对称的。

证明:

(1)∵ R1,R2是A上的自反关系

∴ IAR1IAR2

∴IAR1R2

∴ R1R2是A上的自反关系

又∵ R1,R2是A上的对称关系

∴ R1R11R2R21

(R1R2)111R1R2R1R2∴ R1R2 是A上的对称关系

离散数学证明题

离散数学证明题解题方法

离散数学历年考试证明题

电大离散数学证明题参考题

离散数学

离散数学

离散数学

离散数学

证明题

证明题

离散数学证明题
《离散数学证明题.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
点击下载本文文档