人人范文网 教案模板

数学二项式定理教案模板(精选多篇)

发布时间:2021-07-07 08:00:52 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:二项式定理

代数教案--二项式定理(2)

王新敞

二项式定理

教学内容及教学目标:

二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.

中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.

通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成. 课时安排:

约6个课时:定理1课时;通项公式1课时;

二项展开式性质2课时(杨辉三角.对称性,增减性,系数和等); 综合运用2课时(证等式及特殊化方法;证整除,求近似值等). 重难点分析: 二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.

二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质

2、需要用到不太熟悉的数学归纳法. 设计思想: 先熟悉定理中展开式各项系数的规律,后一节再用数学归纳法证明,以分散难点.

在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习.

新疆奎屯市一中

第1页(共6页) 代数教案--二项式定理(2)

王新敞

第2课时

二项式定理的证明和通项公式

一、教学内容:

二项式定理的证明和通项公式

二、教学目标:

1.掌握二项展开式的通项公式 2.培养推理证明的能力; 3.引导学生发展与创新的意识.

三、重点和难点:

重点:二项式定理的证明、通项公式等; 难点:二项式定理的证明。

四、教学过程: 1.复习上节内容

二项式定理:

1n12n22rnrrnnabnCn0anCnabCnabCnabCnb 012n二项式系数:Cn,Cn,Cn,,Cn.

2.新授

二项式定理的证明:用数学归纳法证明

1⑴当n=1时,等式的左边是ab=ab ;等式的右边是C10aC1b=ab.1于是,当n=1时等式成立.⑵假设nk时等式成立,即

abk0k1k1CkaCkabCk2ak2b2CkrakrbrCkkbk

当nk+1时

abk1=abkab1

=(CkaCka0k1k1bCk2ak2b2CkrakrbrCkkbk)(ab)

新疆奎屯市一中

第2页(共6页) 代数教案--二项式定理(2)

王新敞

0k11k =CkaCkabCk2ak1b2Ckr1akrbr1Ckkabk 0k11k12 +CkabCkabCkrakrbr1Ckk1abkCkkbk1 0k1101 Cka(CkCk)akb(Ck2Ck)ak1b2(Ckr1Ckr)akrbr1

(CkkCkk1)abkCkkbk1

由组合数的性质,得到

1krr1k1k1abk1Ck01ak1Ck11akbCk21ak1b2CkrabC1k1b这就是说,当nk+1时等式成立。

根据⑴、⑵,可知对于任意自然数n,公式都成立。

在数学中同一个式子可以有多种不同的看法,如ab中的两个字母可以看

5b成是对等的,xa括号中的两项则可以看成有主从,a51括号中的两

a55项则有常数与变数之分.

rnrr通项公式:Tr1Cnab.(r0,1,2,,n)

通项是所有项的代表,具有典型和核心作用.很多问题都是通过分析通项而窥知全体具有的规律的.

对于以公式的形式给出的知识,抓住公式的特征是必要的.通项公式中,Tr+1是项的标志,注意其下标是r+1而非r;右边的二项式系数是个组合数,其下标是n,上标是r,上标比Tr+1的下标小1;右边a与b的指数和为n,且a 的指数是n-r,b的指数是r.

对于公式,又一个重要的认识方法是把它抽象地看作几个有关参数的方程,从而知道其中的几个量就可以求另外的量.以二项展开式的通项公式而论,其中含有a,b,n,r,T五个量,显然,知道其中的几个或他们的某些关系,可以求另外的几个.

新疆奎屯市一中

第3页(共6页) 代数教案--二项式定理(2)

王新敞

3.例题分析

例1.利用二项式定理展开pq.

n(意在:出现中间是-号的情况.) 引导发现:符号相间的规律.

13例2.求x的展开式中x的系数.x1r9r解:展开式的通项是

C9x(1)rC9rx92r.

x根据题意,得

92r3

r=3

3因此,x的系数是

(1)3C9= - 84 39r例3.在(ax+1)7的展开式中x3的系数是x2与x4的系数的等差中项,若实数a>1,那么a=______.

解:∵在(ax+1)7的展开式中x3的系数是x2与x4的系数的等差中项,

523443∴C7aC7a2C7a

∵ a>1, ∴a=14.练习

1.(10. 5xa2ax)6的展开式中,第五项是…………(

1520156x

2A.

B.

3 C.D.

xxxa2.(3a1a)15的展开式中,不含a的项是第(

)项

A.7

B.8

C.9

D.6 新疆奎屯市一中

第4页(共6页) 代数教案--二项式定理(2)

王新敞

3.二项式(z-2)6的展开式中第5项是-480,求复数z.4.求二项式(33412)7的展开式中的有理项.

325.求x14x16x14x1.

(意在:体现公式应该会逆用.同时,注意向已知方向化归.) 解:原式[x14x16x14x11]1

432x111

4x41.

5.小结: (1)、二项式定理蕴含着丰富的数学美,它有巧妙的数形结合美、抽象的美、奇异的美、统一的美等等。我们在学习数学时要逐步学会欣赏数学的美; (2)、二项式定理中的a、b是很有变化的,在具体问题中如果能找到它们是怎样变的,

那么就找到了解决问题的关键。 (3)、二项式系数与二项式展开式系数是不同的两个概念。 (4)、通项公式的作用不小,在以后的学习中会经赏常用到它。

6.布置作业: 7.课后检测

1(x)9x的展开式中含x3的项是

.1.10(3ix)2.二项式的展开式中的第八项是………(

) 7332403ix3603ix

A.-135x3

B.3645x2

C.

D.

2457(35)3.的展开式中的整数项是…………(

A.第12项

B.第13项

C.第14项

D.第15项

(3x4.22)n展开式中第9项是常数项,则n的值是 (

A.13

B.12

C.11

D.10 新疆奎屯市一中

第5页(共6页) 代数教案--二项式定理(2)

王新敞

5.(2di)的展开式中的第7项是……………(

A.2882d

B.-2882d

C.-672d3i

D.672d3i 229(2x36.110)2x展开式的常数项是

.(|x|7.12)3|x| 展开式的常数项是

.(8.在xb3)18bx的展开式中,第

项是中间项,中间项是

.

9.已知(10+xlgx)5的展开式中第4项为106,求x的值.

*10.若(1-2x)5展开式中的第2项小于第1项,且不小于第3项,求实数x的取值范围.

新疆奎屯市一中

第6页(共6页)

推荐第2篇:教案 二项式定理 教师版

10.5 二项式定理

●知识梳理

1.二项展开式的通项公式是解决与二项式定理有关问题的基础.2.二项展开式的性质是解题的关键.3.利用二项式展开式可以证明整除性问题,讨论项的有关性质,证明组合数恒等式,进行近似计算等.●点击双基

1.已知(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|等于 A.29

B.49

C.39

D.1 解析:x的奇数次方的系数都是负值,

∴|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9.∴已知条件中只需赋值x=-1即可.答案:B 2.(2004年江苏,7)(2x+x)4的展开式中x3的系数是 A.6 B.12

C.24

D.48

2解析:(2x+x)4=x2(1+2x)4,在(1+2x)4中,x的系数为C24·2=24.答案:C 3.(2004年全国Ⅰ,5)(2x3-A.14

1xr23(7x)1x)7的展开式中常数项是

C.42

D.-42

1xr)r=C727r· B.-14

解析:设(2x3-

r)7的展开式中的第r+1项是Tr1=C7(2x3)7r(-(-1)r·x当-r2,

61+3(7-r)=0,即r=6时,它为常数项,∴C67(-1)·2=14.答案:A 34.(2004年湖北,文14)已知(x+x213n

)的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

3解析:∵(x2+x13)n的展开式中各项系数和为128,

313r)r=C7·x∴令x=1,即得所有项系数和为2n=128.

r∴n=7.设该二项展开式中的r+1项为Tr1=C7(x2)7r·(x

6311r6,

令6311r6=5即r=3时,x5项的系数为C37=35.答案:35 5.若(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),且a∶b=3∶1,那么n=_____________.2解析:a∶b=C3n∶Cn=3∶1,n=11.答案:11 ●典例剖析

【例1】 如果在(x+124x)n的展开式中,前三项系数成等差数列,求展开式中的有理项.解:展开式中前三项的系数分别为1,由题意得2×n2n2,

n(n1)8,

=1+n(n1)8,得n=8.

12r163r设第r+1项为有理项,Tr1=C·有理项为T1=x4,T5=358r8·x

4,则r是4的倍数,所以r=0,4,8.x,T9=

1256x2.评述:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r.【例2】 求式子(|x|+解法一:(|x|+1|x|1|x|-2)3的展开式中的常数项.

1|x|-2)3=(|x|+

-2)(|x|+

1|x|-2)(|x|+

1|x|1|x|-2)得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x|,一个括号取∴常数项为(-2)3+(-12)=-20.解法二:(|x|+1|x|,一个括号取-2,得C13C12(-2)=-12,

-2)3=(|x|-

1|x|)6.设第r+1项为常数项,

r则Tr1=C6·(-1)r·(1|x|r)r·|x|6r=(-1)6·C6·|x|62r,得6-2r=0,r=3.∴T3+1=(-1)3·C36=-20.思考讨论

(1)求(1+x+x2+x3)(1-x)7的展开式中x4的系数; (2)求(x+4x-4)4的展开式中的常数项;

(3)求(1+x)3+(1+x)4+…+(1+x)50的展开式中x3的系数.解:(1)原式=1=14.(2)(x+4x1x41x4(1-x)7=(1-x4)(1-x)6,展开式中x4的系数为(-1)4C6-

-4)=4(x24x4)x44=

(2x)x48442·,展开式中的常数项为C8(-1)4=1120.(3)方法一:原式=(1x)[(1x)3481](1x)1=

(1x)51(1x)x3.4展开式中x3的系数为C51.方法二:原展开式中x3的系数为

3333343434C33+C4+C5+…+C50=C4+C4+…+C50=C5+C5+…+C50=…=C51.评述:把所给式子转化为二项展开式形式是解决此类问题的关键.

n【例3】 设an=1+q+q2+…+qn1(n∈N*,q≠±1),An=C1na1+C2na2+…+Cnan.(1)用q和n表示An; (2)(理)当-3

=11q2nn12n[(C1n+C2] n+…+Cn)-(Cnq+Cnq+…+Cnq)=11q{(2n-1)-[(1+q)n-1]} =11q[2n-(1+q)n].(2)An2n=11q[1-(1q2)n].因为-3

●闯关训练 夯实基础

1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为

A.20

B.219 C.220 D.220-1 2020解析:C120+C220+…+C20=2-1.答案:D 2.(2004年福建,文9)已知(x-是

A.28

ax

)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和B.38

C.1或38

-2r

D.1或28

rr解析:Tr1=C8·x8r·(-ax1)r=(-a)rC8·x8

.令8-2r=0,∴r=4.4∴(-a)4C8=1120.∴a=±2.当a=2时,令x=1,则(1-2)8=1.当a=-2时,令x=-1,则(-1-2)8=38.答案:C 3.(2004年全国Ⅳ,13)(x-1x)8展开式中x5的系数为_____________.解析:设展开式的第r+1项为Tr1=Cx令8-3r2r88-r

·(-

1x)=(-1)Cx

rr

r883r2.

2=5得r=2时,x5的系数为(-1)2·C8=28.答案:28 4.(2004年湖南,理15)若(x3+

x321x)n的展开式中的常数项为84,则n=_____________.

92解析:Tr1=C(x)令3n-92rn3n-r·(x)=Cn·x

rr3nr.r=0,∴2n=3r.∴n必为3的倍数,r为偶数.6试验可知n=9,r=6时,Crn=C9=84.答案:9 5.已知(xlgx+1)n展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x的值.21解:由题意Cn+Cn+Cnnnn=22,

10即C2n+Cn+Cn=22,

∴n=6.∴第4项的二项式系数最大.lgx∴C3)3=20000,即x3lgx=1000.6(x∴x=10或x=110.培养能力

6.若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:(1)a1+a2+a3+…+a11;(2)a0+a2+a4+…+a10.解:(1)(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.令x=1,得 a0+a1+a2+…+a11=-26,

又a0=1,

所以a1+a2+…+a11=-26-1=-65.(2)再令x=-1,得

a0-a1+a2-a3+…-a11=0.

①+②得a0+a2+…+a10=1

2 ①

(-26+0)=-32.评述:在解决此类奇数项系数的和、偶数项系数的和的问题中常用赋值法,令其中的字母等于1或-1.7.在二项式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项.(1)求它是第几项;(2)求ab的范围.-

(12-r)+nrrr解:(1)设Tr1=C12(axm)12r·(bxn)r=C12a12rbrxm

为常数项,则有m(12-r)+nr=0,即m(12-r)-2mr=0,∴r=4,它是第5项.(2)∵第5项又是系数最大的项,

43C12a8b4≥C12a9b3,

∴有 45C12a8b4≥C12a7b5.

由①得121110943294851a8b4≥12111032aba9b3,

∵a>0,b>0,∴由②得ab b≥a,即≤ab≤

94.≥85,∴≤94.8.在二项式(x+24x)n的展开式中,前三项的系数成等差数列,求展开式中的有理项.分析:根据题意列出前三项系数关系式,先确定n,再分别求出相应的有理项.解:前三项系数为C0n,12C1n,

1410C2n,由已知Cn=Cn+

142

C2n,即n-9n+8=0,

解得n=8或n=1(舍去).Tr1=C(x)∵4-3r4r88-r(24x)=C·-r

r812r·x

43r4.∈Z且0≤r≤8,r∈Z,

358∴r=0,r=4,r=8.∴展开式中x的有理项为T1=x4,T5=评述:展开式中有理项的特点是字母x的指数4-探究创新

9.有点难度哟! 求证:2

1256 x2.

3r4∈Z即可,而不需要指数4-

3r4∈N.1n)n

1n)n=1+1+C2n×

12!1n2+C3n×

1n3+…+Cnn×

1nn=2+

12!×+13!×n(n1)(n2)n3+…+×

n(n1)21n1n

13!

+14!+…+1n!

1n1[1()]22112n

=3-()n1

111n22n+C3n×

1n3+…+Cnn×1nn>2.所以2

1.在使用通项公式Tr1=Crnanrbr时,要注意: (1)通项公式是表示第r+1项,而不是第r项.(2)展开式中第r+1项的二项式系数Cn与第r+1项的系数不同.(3)通项公式中含有a,b,n,r,Tr1五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n是正整数,r是非负整数且r≤n.2.证明组合恒等式常用赋值法.●教师下载中心

r教学点睛

1.要正确理解二项式定理,准确地写出二项式的展开式.2.要注意区分项的系数与项的二项式系数.

3.要注意二项式定理在近似计算及证明整除性中的应用.4.通项公式及其应用是二项式定理的基本问题,要熟练掌握.拓展题例

【例题】 求(a-2b-3c)10的展开式中含a3b4c3项的系数.解:(a-2b-3c)10=(a-2b-3c)(a-2b-3c)…(a-2b-3c),从10个括号中任取3个括号,从中取a;再从

34剩余7个括号中任取4个括号,从中取-2b;最后从剩余的3个括号中取-3c,得含a3b4c3的项为C10a3C7·(-2b)4333433433434342(-3)abc.所以含abc项的系数为-C10C7×16×27.C33(-3c)=C10C7C3

推荐第3篇:二项式定理及数学归纳法

二项式定理及数学归纳法

【真题体验】

1.(2012·苏北四市调研)已知an=(12)n(n∈N*)

(1)若an=a+2(a,b∈Z),求证:a是奇数;

(2)求证:对于任意n∈N*都存在正整数k,使得an=k-1k.12233nn证明 (1)由二项式定理,得an=C0n+C2+Cn2)+Cn(2)+„+Cn(2),

0244224所以a=Cn+C2n2)+Cn(2)+„=1+2Cn+2Cn+„,

24因为2C2n+2Cn+„为偶数,所以a是奇数.

(2)由(1)设an=(1+2)n=a+b2(a,b∈Z),则(1-2)n=a-b2, 所以a2-2b2=(a+b2)(a-b2)=(1+2)n(1-2)n=(1-2)n,

当n为偶数时,a2=2b2+1,存在k=a2,使得an=a+b2=a+2b=kk-1, 当n为奇数时,a2=2b2-1,存在k=2b2,使得an=a+b2=a+2b=k-1k, 综上,对于任意n∈N*,都存在正整数k,使得an=k-1+k.

2.(2010·江苏,23)已知△ABC的三边长都是有理数.

(1)求证:cos A是有理数;

(2)求证:对任意正整数n,cos nA是有理数.

b2+c2-a

2(1)证明 设三边长分别为a,b,c,cos A= 2bc

∵a,b,c是有理数,

b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法具有封闭性, b2+c2-a2

∴必为有理数,∴cos A是有理数. 2bc

(2)证明 ①当n=1时,显然cos A是有理数;

当n=2时,∵cos 2A=2cos2A-1,因为cos A是有理数,

∴cos 2A也是有理数;

②假设当n≤k(k≥2)时,结论成立,即cos kA、cos(k-1)A均是有理数. 当n=k+1时,cos(k+1)A=cos kAcos A-sin kAsin A

1=cos kAcos A-[cos(kA-A)-cos(kA+A)]

211=cos kAcos A-cos(k-1)Acos(k+1)A 22

解得:cos(k+1)A=2cos kAcos A-cos(k-1)A

∵cos A,cos kA,cos(k-1)A均是有理数,

∴2cos kAcos A-cos(k-1)A是有理数, ∴cos(k+1)A是有理数. 即当n=k+1时,结论成立.

综上所述,对于任意正整数n,cos nA是有理数. 【高考定位】

高考对本内容的考查主要有:

(1) 二项式定理的简单应用,B级要求; (2)数学归纳法的简单应用,B级要求 【应对策略】

(1)对于二项式定理只要掌握二项式定理、通项、项的系数的求法,掌握赋值法即可. (2)数学归纳法主要是用来解决与自然数有关的命题.通常与数列、不等式证明等基础知识和基本技能相结合来考查逻辑推理能力,要了解数学归纳法的原理,并能加以简单的应用

.必备知识

1.二项式定理

n1n1nrrn

(1)二项式定理:(a+b)n=C0b+„+Crb+„+Cnna+Cnananb,上式中右边的多项

式叫做(a+b)n的二项展开式,其中Crn(r=1,2,3,„,n)叫做二项式系数,式中第r+1项叫

nrr

做展开式的通项,用Tr+1表示,即Tr+1=Crb; na

(2)(a+b)n展开式中二项式系数Crn(r=1,2,3,„,n)的性质:

nr

①与首末两端“等距离”的两项的二项式系数相等,即Crn=Cn;

12nn0213n1②C0.n+Cn+Cn+„+Cn=2;Cn+Cn+„=Cn+Cn+„=

2-

2.数学归纳法

运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.

必备方法

1.二项式定理

(1)求二项式定理中有关系数的和通常用“赋值法”.

nrr(2)二项式展开式的通项公式Tr+1=Crb是展开式的第r+1项,而不是第r项. na

2.数学归纳法

(1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形

式,然后利用归纳假设,经过恒等变形,得到结论.

(2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法.

(3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用.

(4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式.(5)解题时经常用到“归纳——猜想——证明”的思维模式.

命题角度一 二项式定理的应用

[命题要点] (1)二项展开式中的二项式系数和展开式系数;(2)求二项展开式的特定项;(3)二项展开式的性质的应用.

【例1】► (2012·南师附中模拟)若二项式(1+2x)n展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项.

[审题视点] 根据展开式中第6项与第7项的系数相等,得到关于n的方程,解得n,再写出二项展开式系数,由二项式系数的性质得到结果.

解 ∵在(1+2x)n的展开式中第6项与第7项的系数相等,

566r∴C5n2=Cn2,∴n=8,∴二项式系数是C8, r1rr1由Cr8≥C8且C8≥C8,得r=4,

即展开式中二项式系数最大的项是第5项为C482.

二项式系数的最大项与展开式系数的最大项不同,本题的第r+1项的二项

rr

式系数是Cr8,而展开式系数却是2C8,解题时要分清.

n

1【突破训练1】 (2012·盐城模拟)已知数列{an}的首项为1,p(x)=a1C0n(1-x)+a2Cnx(1221n1n

-x)n1+a3Cnx(1-x)n2+„+anCn(1-x)+an+1Cnnxnx

(1)若数列{an}是公比为2的等比数列,求p(-1)的值;

(2)若数列{an}是公比为2的等差数列,求证:p(x)是关于x的一次多项式. (1)解 法一 由题设知,an=2n1.

0n1n12n2n0

p(-1)=1·C02+2·C12+22·C22+„+2n·Cn2 n(-1)·n(-1)·n(-1)·n(-1)·

0n12n2=C02+Cn(-2)1·2n1+C22+„+ n(-2)·n(-2)·

nCn(-2)n·20=(-2+2)n=0.

n1法二 若数列{an}是公比为2的等比数列,则an=2n1,故p(x)=C0n(1-x)+Cn(2x)(1

2n21n1nnn

-x)n1+C2+„+Cn(1-x)+Cnn(2x)(1-x)n(2x)n(2x)=[(1-x)+2x]=(1+x).

所以p(-1)=0.

(2)证明 若数列{an}是公差为2的等差数列,则an=2n-1.

n1n1n1n1n

p(x)=a1C0+„+anCnx(1-x)+an+1Cnn(1-x)+a2Cnx(1-x)nx

n1n122n=C0+(1+4)Cnx(1-x)n2+„+(1+2n)Cnn(1-x)+(1+2)Cnx(1-x)nx

nn12n2n1n122=[C0+C2+„+Cn+2Cnx(1-x)nn(1-x)+C1nx(1-x)nx(1-x)nx]+2[Cnx(1-x)

n+„+Cnnx].

由二项式定理知,

0n12n2nn

Cn(1-x)n+C1+C2+„+Cnnx(1-x)nx(1-x)nx=[(1-x)+x]=1.

n!n-1!-1因为kCk=k=nnCknn-1, k!n-k!k-1!n-k!

n122n所以C1+2Cnx(1-x)n2+„+nCnnx(1-x)nx

n12n21n=nC0+nC1+„+nCnn-1x(1-x)n-1x(1-x)n-1x

n1n21n1=nx[C0+C1+„+Cn] n-1(1-x)n-1x(1-x)n-1x

=nx[(1-x)+x]n1=nx,

所以p(x)=1+2nx.

即p(x)是关于x的一次多项式.

命题角度二 数学归纳法的应用

[命题要点] (1)证明代数恒等式;(2)证明不等式问题;(3)证明三角恒等式;(4)证明整除性问题.

xxx

1+1+„1+的展开式中,x的系数为an,x2的【例2】► (2012·南京模拟)记222系数为bn,其中n∈N*.

(1)求an;

pq1

11+,对n∈N*,n≥2恒成立?证明(2)是否存在常数p,q(p<q),使bn=322你的结论.

[审题视点] 可以先用特殊值代入,求出p,q得到猜想,再用数学归纳法证明猜想的正确性.

1111

解 (1)根据多项式乘法运算法则,得an=1-222

2pq171

1+1+,解得p=-2,q=-1.(2)计算得b2b3=.代入bn=8323221111121

1-=-n≥2且n∈N*) 下面用数学归纳法证明bn1-2-3232341

①当n=2时,b2=

81121

②设n=k时成立,即bk=,

323

4则当n=k+1时,

a112111

bk+1=bk+=+++-+

32342221121

=+++.3234由①②可得结论成立.

运用数学归纳法证明命题P(n),由P(k)成立推证P(k+1)成立,一定要用到

条件P(k),否则不是数学归纳法证题.

1111【突破训练2】 (2012·泰州中学调研)已知多项式f(n)=5+n4n3n.

52330(1)求f(-1)及f(2)的值;

(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论. 解 (1)f(-1)=0,f(2)=17

(2)先用数学归纳法证明,对一切正整数n,f(n)是整数. ①当n=1时,f(1)=1,结论成立.

1111

②假设当n=k(k≥1,k∈N)时,结论成立,即f(k)=k5+k4+3-k是整数,则当n

523301111

=k+1时,f(k+1)=(k+1)5+k+1)4(k+1)3-(k+1)

52330

51423324

5C05k+C5k+C5k+C5k+C5k+C5=

413221431223C0C04k+C4k+C4k+C4k+C43k+C3k+C3k+C

3+-

23

(k+1)=f(k)+k4+4k3+6k2+4k+1.30

根据假设f(k)是整数,而k4+4k3+6k2+4k+1显然是整数. ∴f(k+1)是整数,从而当n=k+1时,结论也成立. 由①、②可知对一切正整数n,f(n)是整数. (Ⅰ)当n=0时,f(0)=0是整数

(Ⅱ)当n为负整数时,令n=-m,则m是正整数,由(Ⅰ)知f(m)是整数, 111

1所以f(n)=f(-m)=(-m)5+-m)4+(-m)3--m)

523301111

5+m4-m3+=-f(m)+m4是整数.

52330综上,对一切整数n,f(n)一定是整数.

20.证明步骤要完整,变形要有依据

一、证明的两个步骤缺一不可 【例1】► 求证:2n>2n+1(n≥3). 解 用数学归纳法证明:

第一步:(1)n=3时,23=8,2×3+1=7,不等式2n>2n+1(n≥3)成立.

第二步:(2)假设n=k(k≥3,且k∈N*)时,不等式成立,即2k>2k+1,则2k1=2·2k>

2(2k+1)=4k+2=2(k+1)+2k>2(k+1)+1,即2k1>2(k+1)+1.所以当n=k+1时也成立.

老师叮咛:不验证初始值的正确性就没有归纳的基础,没有运用归纳假设的证明不是数学归纳法,证明的两个步骤缺一不可.二、正确写出从n=k(k≥n0,k∈N*)到n=k+1时应添加的项

【例2】► 用数学归纳法证明(n+1)(n+2)„(n+n)=2n·1·3·„·(2n-1),从k到k+1,左边需要增乘的代数式为________.

解析 当n=k时,左边=(k+1)(k+2)·„·(k+k),

当n=k+1时,左边=[(k+1)+1][(k+1)+2]·„·[(k+1)+(k+1)] =(k+2)(k+3)„(k+k)(k+k+1)(k+k+2) k+k+1k+k+2=(k+1)(k+2)„(k+k)

k+1=(k+1)(k+2)„(k+k)[2(2k+1)],

所以从k到k+1,左边需要增乘的代数式为2(2k+1). 答案 2(2k+1)

老师叮咛:要关注从n=k(k≥n0,k∈N*)到n=k+1时两个式子之间的实质区别,不能只看表面现象,正确写出从n=k(k≥n0,k∈N*)到n=k+1时应添加的项,才能进行正确的变形.如本题中就不能只添加k+1+k+1=2k+2.

推荐第4篇:二项式定理二项式定理的应用教案

排列、组合、二项式定理·二项式定理的应用·教案

教学目标

1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问题等.

2.渗透类比与联想的思想方法,能运用这个思想处理问题. 3.培养学生运算能力,分析能力和综合能力. 教学重点与难点

数学是一门工具,学数学的目的就是为了应用.怎样建立起要解决的问题与数学知识之间的联系(如一个近似计算问题与二项式定理有没有联系,怎样联系),是这节课的难点,也是重点所在.

教学过程设计

师:我们已经学习了二项式定理及二项式系数,请大家用6分时间完成以下三道题:

(1)在(1-x3)(1+x)10的展开式中,x5的系数是多少? (2)求(1+x-x2)6展开式中含x5的项.

(全体学生参加笔试练习)

6分钟后,用投影仪公布以上三题的解答:

(1)原式=(1+x)10-x3(1+x)10,可知x5的系数是(1+x)

(2)原式=[1+(x-x2)]6=1+6(x-x2)+15(x-x2)2+20(x-x2)3+15(x-x2)4+6(x-x2)5+(x-x2)6.

其中含x5的项为:20·3x5+15(-4)x5+6x5=6x5.

师:解(1),(2)两题运用了变换和化归思想,第(2)题把三项式化为二项式,创造了使用二项式定理的条件.

第(3)题的解法是根据恒等式的概念,a,b取任何数时,等式都成立.根据习题结构特征选择a,b的取值.这种用概念解题的思想经常使用.

下面我们看二项式定理的一些应用.

师:请同学们想一想,例1怎样解?

生甲:从结构上观察,则与练习的第(3)题有相似之处,只是组合数的系数成等比数列,是否根据二项式定理令a=1,b=3,即可得到证明.

师:请同学们根据生甲所讲,写出证明. (找一位同学板演)

证明:在(a+b)n的展开式中令a=1,b=3得:

师:显然,适当选取a,b之值是解这一类题的关键,再看练习题. 练习

生乙:这题与例1类比有共同点,仍是组合数的运算,不同点是缺

我考虑如能用二项式定理解,应对原题做以下变换:

师:分析得很透彻.这种敢想、会想精神是每位同学都要培养的.首先是敢字,不要一见题目有些生疏就采取放弃态度;要敢于分析,才能善于分析,将来才敢于创新,善于创新.

请大家把解题过程写在笔记本上. (教师请一名同学板演)

在(a+b)6的展开式中令a=1,b=3,得

师:解题过程从“在(a+b)6的展开式中令 a=1,b=3”写起就可以了.希望同学们再接再励,完成下个练习.

练习

师:大家议论一下,这道题能用二项式定理来解吗?

生丙:初步观察,与上节课我们学刁的:“在(a+b)n的展开式

解决.我们注意到组合数代数和的值为余弦值或正弦值,又注意到正项

„)或r=4m+1(m=0,1,2,„),负项出现在r=4m+2(m=0,1,2,„)或r=4m+3(m=0,1,2,„),而虚数单位i有以下性质:

i4m=1,i4m+1=i,i4m+2=-1,i4m+3=-i(m∈Z). 于是想在(a+b)n的展开式中令a=1,b=i.

师:分析得有道理,请同学们按生丙同学的意见进行演算. (教师找一位同学板演)

证明:设i是虚数单位,在(a+b)n的展开式中令a=1,b=i中得:

另一方面,又有

由此得到

根据复数相等定义,有

师:认真分析习题的结构,运用类比与联想的思想方法,可以帮助我们找到解题的思路,下面我们研究二项式定理在数字计算方面的应用.

例2 计算:1.9975(精确到0.001).

生丁:这道题若用二项式定理计算,必须把1.997看作1+0.997,这样,1.9975=(1+0.997)5.

师:计算简单吗?

生戊:把1.9975化为(2-0.003)5,再展开,由于精确到0.001,不必各项都计算.

师:按生戊所谈的方法,大家在自己的笔记本上计算一下. (教师找一位同学板演) 解:1.9975=(2-0.003)5

=25-5×24×0.003+10×23×0.0032-10×22×0.003+„

由于|T6|<|T5|<|T4|≈1.08×10-6,则|T4|+T5+T6|<0.000004. 所以1.9975≈32-0.24+0.000 72≈31.761. 师:1996年全国高考有这样一道应用题: (用投影仪示出,老师读题)

某地现有耕地10 000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?

稍候,教师问:

谁想出解法了,请讲一讲.

生己:设该地区现有人口为P人,粮食单产为M吨/公顷,耕地平均每年至多只能减少x公顷.

十年后耕地亩数:104-10x,

十年后总产量:M×(1+22%)(104-10x). 十年后人口:P×(1+1%)10, 依题意可以得到不等式

师:实际计算时,会遇到(1+0.01)10的计算问题,请全体同学在笔记本上迅速计算出来.

(教师请一同学板演)

师:真迅速啊!请同学们课下把这道高考题完成. (答案:按规划该地区耕地平均每年至多只能减少4公顷) 现在,我们再讨论一个新的问题.

例3 如果今天是星期一,那么对于任意自然数n,经过23n+3+7n+5天后的那一天是星期几?

生庚:先将此题转化为数学问题,即本题实际上寻求对于任意自然数n,23n+3+7n+5被7除的余数.

受近似计算题目启发,23n+3=8n+1=(7+1)n+1,这样可以运用

数,7n也是7的倍数,最后余数是1加上5,是6了. 师:请同学们在笔记本上完成此题的解答 (教师请一名同学板演)

解:由于23n+3+7n+5=8n+1+7n+5=(7+1)n+1+7n+5

则 23n+3+7n+5被7除所得余数为6 所以对于任意自然数n,经过23n+3+7n+5后的一天是星期日.

师:请每位同学在笔记本上完成这样一个习题:7777-1能被19整除吗? (教师在教室内巡视,3分钟后找学生到黑板板演) 解:7777-1=(76+1)77

由于76能被19整除,因此7777-1能被19整除. 师:请生辛谈谈他怎样想到这个解法的? 生辛:这是个幂的计算问题,可以用二项式定理解决.如果把7777改成(19+58)77,显然展开式中最后一项5877仍然不易判断是否能被19整除,于是我想到若7777-1能被38,或能被57,或能被76,或能被95整除,必能被19整除,而76与77只差1,故欲证7777-1被19整除,只需证(76+1)77被76整除.得到了以上的解法.

师:二项式定理解决的是乘方运算问题,因此幂的问题可以考虑二项式定理.下面我们解一些综合运用的习题

例4 求证:3n>2n-1(n+2)(n∈N,且n≥2). 师:仍然由同学先谈谈自己的想法.

生壬:我觉得这道题仍可以用二项式定理解,为了把左式与右式发生联系,将3换成2+1.

注意到:

① 2n+n·2n-1=2n-1(2+n)=2n-1(n+2); ② n≥2,右式至少三项;

这样,可以得到3n>2n-1(n+2)(n∈N,且n≥2).

生癸:根据题设条件有n∈N,且n≥2.用数学归纳法应当可以证明. 师:由于观察习题时思维起点不同,得到了习题不同解法,生×同学从乘方运算这点考虑,想到二项式定理,生×同学从题设条件n∈N考虑,想到数学归纳法.大家要养成习惯,每遇一题,从不同角度观察思考,得到更多解法,使我们思考问题更全面.

用二项式定理证明,生×同学已经讲清楚了证明过程,大家课下在笔记本上整理好,现在请同学们在笔记本上完成数学归纳法的证明.

(教师请一名同学板演)

证明:①当n=2时,左式=32=9,右式=22-1(2+2)=2×4=8,显然9>8.故不等式成立. ②假设n=k(k∈N且k≥2)时,不等式成立,即3k>2k-1(k+2),则当n=k+1时,

由于 左式=3k+1=3·3k>3·2k-1(k+2)=3k·2k-1+3·2k. 右式=2(k+1)-1[(k+1)+2]=2k(k+3)=k·2k+3·2k, 则 左式-右式=(3k·2k-1+3·2k)-(k·2k+3·2k) =3k·2k-1-2k·2k-1=k·2k-1>0.

所以 左式>有式.故当n=k+1时,不等式也成立. 由①,②不等式对n≥2,n∈N都成立.

师:为了培养综合能力,同学们在笔记本再演算一道习题: 设n∈N且n>1,求证:

(证明过程中可以运用公式:对n个正数a1,a2,„,an,总有

(教师在教室巡视,过2分钟找一名同学到黑板板演第(1)小题,再过3分钟找另一名同学板演第(2)小题)

师:哪位同学谈一谈此题应怎样分析?

生寅:第(1)小题左式与右式没有直接联系,应把它们分别转化,

列前n项的和,由求和公式也能得到2n-1.因此得到证明. 第(2)小题左式与右式也没有直接联系.根据题目给出的公式要

师:根据式子的结构想有关知识和思考方法是分析问题的一种重要方法,要在解题实践中掌握.

本节课讨论了二项式定理主要应用,包括组合数的计算、近似计算、整除和求余数的计算以及与其他数学知识的综合应用.当然,二项式定理的运用不止这些,凡是涉及到乘方运算(指数是自然数或转化为自然数)都可能用到二项式定理.认真分析习题的结构,类比、联想、转化是重要的找到解题途径的思考方法,希望引起同学们的重视.

作业 1.课本习题:P253习题三十一:6,7,10; 2.课本习题:P256复习参考题九:15(2). 3.补充题:

课堂教学设计说明

1.开始练习起着承上启下的作用.这三题既复习了二项式定理及其性质,又考查了数学基本思想,如等价变换、未知转化已知,取特殊值,利于本节课进行,又培养了学生预习复习的学习习惯.

2.只有学生自己动手、动脑、动口才能真正把知识学到手,才能培养思维能力、计算能力、表达能力、分析问题解决问题能力.因此课堂教学一定以学生为主体,体现主体参与.

3.学生的回答不会像教案写的那样标准,教师要因势利导,帮助学生提高分析能力.

推荐第5篇:高考数学全面突破 二项式定理

11.3二项式定理

考情分析

1.能用计数原理证明二项式定理.

2.会用二项式定理解决与二项展开式有关的简单问题.

基础知识

1.二项式定理

n1n-1n-rrn*(a+b)n=C0b+„+Crb+„+Cnna+Cnananb(n∈N)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式.

其中的系数Crn(r=0,1,„,n)

n-rrn-rr式中的Crb叫二项展开式的通项,用Tr+1表示,即通项Tr+1=Crb.nana

2.二项展开式形式上的特点

(1)项数为(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为(3)字母an逐项减1直到零;字母b幂排列,从第一项起,次数由零逐项增1直到n.-11(4)二项式的系数从Cn,一直到Cnn3.二项式系数的性质 -(1).

(2)增减性与最大值: 二项式系数Ckn,当n+1k<2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;

n当n是偶数时,中间一项C2取得最大值;

n-1n+1当n是奇数时,中间两项C2,C2取得最大值.

012nn(3)各二项式系数和:Cn+Cn+Cn+„+Crn+„+Cn=2;

24135n-1C0.n+Cn+Cn+„=Cn+Cn+Cn+„=

2注意事项

n-rr1.运用二项式定理一定要牢记通项Tr+1=Crb,注意(a+b)n与(b+a)n虽然相na

同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项

展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指Cr而后n,者是字母外的部分.前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.

2.二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.

3.(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.

(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.

4.(1)对称性;

(2)增减性;

(3)各项二项式系数的和; 以上性质可通过观察杨辉三角进行归纳总结.

题型一 二项展开式中的特定项或特定项的系数

13【例1】已知(3x-)n的展开式中各项系数之和为256,则展开式中第7x

项的系数是()

B.2

4D.252 A.-24C.-252

答案:D

解析:令x=1可得各项系数之和为2n=256,则n=8,故展开式中第7项的

26系数为C68×3×(-1)=252.

a【变式1】若x-6展开式的常数项为60,则常数a的值为________. x

a6-r6-3r解析 二项式x6展开式的通项公式是Tr+1=Cr(a)rx-2r=Cr(-6x6xx

2a)r,当r=2时,Tr+1为常数项,即常数项是C26a,根据已知C6a=60,解得a

=4.

答案 4

题型二 二项式定理中的赋值

【例2】已知(1+x)10=a0+a1(1-x)+a2(1-x)2+„+a10(1-x)10,则a8=

()

A.180

C.-

5答案:A

10-r解析:(1+x)10=[2-(1-x)]10其通项公式为:Tr+1=Cr(-1)r(1-x)r,a8102B.90 D.5

是r=8时,第9项的系数.

28所以a8=C8102(-1)=180.故选A.

【变式2】 已知(1-2x)7=a0+a1x+a2x2+„+a7x7.

求:(1)a1+a2+„+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+„+|a7|.

解 令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1.①

令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.②

(1)∵a0=C07=1,∴a1+a2+a3+„+a7=-2.

-1-37(2)(①-②)÷2,得a1+a3+a5+a7==-1 094.2

-1+37(3)(①+②)÷2,得a0+a2+a4+a6=2=1 093.

(4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零,而a1,a3,a5,a7小于零, ∴|a0|+|a1|+|a2|+„+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7)=1 093-(-1 094)=2 187.

题型三 二项式的和与积

2【例3】二项式(x+x)(1-x)4的展开式中x的系数是________.

答案:

32解析:利用分步计数原理与组合数公式,符合题目要求的项有x(-x)4和

x·14,求和后可得3x,即展开式中x的系数为3.

2【变式3】xx-x7的展开式中,x4的系数是________(用数字作答). 

272737解析 原问题等价于求x-x的展开式中x的系数,x-x的通项Tr+1=Cr7x

-r2r7-2r-x=(-2)rCr,令7-2r=3得r=2,∴x3的系数为(-2)2C27x7=84,即

xx-2x7的展开式中x4的系数为84.

答案 84

重难点突破

【例4】已知(1-2x)7=a0+a1x+a2x2+„+a7x7.求:(1)a1+a2+„+a7;

(2)a1+a3+a5+a7;

(3)a0+a2+a4+a6;

(4)|a0|+|a1|+|a2|+„+|a7|.

解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1, 令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.

(1)∵a0=C07=1,∴a1+a2+a3+„+a7=-2.

(2)(①-②)÷2,

-1-37得a1+a3+a5+a7=2=-1094.

(3)(①+②)÷2,

-1+37得a0+a2+a4+a6=2=1093.

(4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零, 而a1,a3,a5,a7小于零,

∴|a0|+|a1|+|a2|+„+|a7|

=(a0+a2+a4+a6)-(a1+a3+a5+a7). ∴由(2)、(3)即可得其值为2187.

① ②

推荐第6篇:高二数学教案:二项式定理

北京英才苑网站

http://www.daodoc.com

·版权所有·盗版必究·

二项式定理(2)

一、课题:二项式定理(2)

二、教学目标:1.进一步熟悉二项式定理及二项展开式的通项公式,并能灵活的应用;

r2.能求展开式中的第r1项的二项式系数Cn与第r1项的系数是不同的概念。

三、教学重点、难点:二项式定理及二项展开式的通项公式的灵活运用。

四、教学过程:

(一)复习:

1.二项式定理及其特例:

0n1nrnrrnn

(1)(ab)nCnaCnabCnabCnb(nN), 1rr

(2)(1x)n1CnxCnxxn.

rnrr2.二项展开式的通项公式:Tr1Cnab.

(二)新课讲解:

例1 (1)求(12x)7的展开式的第四项的系数;

3 (2)求(x)的展开式中x的系数及二项式系数。 19x3解:(12x)7的展开式的第四项是T31C7(2x)3280x3,

∴(12x)的展开式的第四项的系数是280. 7

(2)∵(x)的展开式的通项是Tr1C9x191r9r()r(1)rC9rx92r,

xx∴92r3,r3,

333∴x的系数(1)3C984,x3的二项式系数C984.

4例2 求(x3x4)的展开式中x的系数。

分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开。

解:(法一)(x3x4)[(x3x)4]

01C4(x23x)4C4(x23x)34

234C4(x23x)242C4(x23x)43C444,

显然,上式中只有第四项中含x的项,

33∴展开式中含x的项的系数是C434768

24444(法二):(x3x4)[(x1)(x4)](x1)(x4)

04132234(C4xC4xC4xC4xC4)04132234(C4xC4x4C4x42C4x43C444)

3433∴展开式中含x的项的系数是C44C44768. 22424

北京英才苑网站

http://www.daodoc.com

·版权所有·盗版必究·

例3 已知f(x)12x14x (m,nN*)的展开式中含x项的系数为36, mn求展开式中含x项的系数最小值。

分析:展开式中含x项的系数是关于m,n的关系式,由展开式中含x项的系数为36,可得2m4n36,从而转化为关于m或n的二次函数求解。

1111解:12x14x展开式中含x的项为Cm2xCn4x(2Cm4Cn)x mn2211∴(2Cm4Cn)36,即m2n18,

12xm14x展开式中含x2的项的系数为 n22222Cn42m22m8n28n, tCm∵m2n18, ∴m182n,

∴t2(182n)2(182n)8n8n16n148n612

3715337时,t取最小值, 16(n2n),∴当n448*2但nN,∴ n5时,t即x项的系数最小,最小值为272,此时n5,m8.

例4 已知(x1)n的展开式中,前三项系数的绝对值依次成等差数列,

24x

(1)证明展开式中没有常数项;(2)求展开式中所有的有理项。

解:由题意:2Cnr822211121Cn()2,即n29n80,∴n8(n1舍去) 221r163rrrr1rr8rC80r8 24 ∴Tr1Cx(4)()C8xx1rx4222xrZ①若Tr1是常数项,则163r0,即163r0,∵rZ,这不可能,∴展开

4式中没有常数项; 8r②若Tr1是有理项,当且仅当163r为整数,∴0r8,rZ,∴ r0,4,8,

4即展开式中有三项有理项,分别是:T1x4,T535x,T91x2.

8256

五、课堂练习:课本第107页练习第5,6题。

六、课堂小结:1.三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性;

2.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r的限制;求有理项时要注意到指数及项数的整数性。

七、作业:课本第143页 复习参考题十第12题,

补充: 1.已知x3a8的展开式中x的系数是ax19展开式中倒数第四项的系数的2倍,求

a,a,a,a,前n项的和;

12.(xx4)n的展开式中第3项的二项式系数比第2项的二项式系数大44,则展开式中

x

常数项。

- 2 - 23n3

推荐第7篇:二项式定理教学设计

1.3.1二项式定理

一、教学目标

1.知识目标:掌握二项式定理及其简单应用

2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理能力以及科学的思维方式。

3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简洁美、和谐美和对称美。

二、教学重点、难点

重点:二项式定理的发现、理解和初步应用及通项公式 难点:展开式中某一项的二项式系数与该项的系数的区别

三、教学过程

创设问题情境:

今天是星期三,15天后星期几,30天后星期几,8100天后星期几呢?

前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几

新课讲解:

问题

1abdc的展开式有多少项?有无同类项可以合并?

由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。

问题

2abb的ab原始展开式有多少项?有几项是同类项?项是怎样构成a的?有规律吗?

学生根据乘法展开式也很快得出结论 问题

3abbaa2bab的

3原始展开式有多少项?经合并后又只能有几项?是哪几项?

学生仍然根据乘法公式算出了答案 问题

4abbaaba的bab的原始展开式有多少项?

44问题

5你能准确快速地写出ab的原始展开式的16项吗?经合并后,又只能有哪几项?

此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,易出错——借此“愤悱”之境,有效的实现思维的烘热)

启发类比:4个袋中有红球a,白球b各一个,每次从4个袋子中各取一个球,有什么样的取法?各种取法有多少种? 在4个括号(袋子)中

0(1) 若每个括号都不取b,只有一种取法得到a,即C4种 1(2) 若只有一个括号取b,共有C4种取法得到ab 2(3) 若只有两个括号取b,共有C4种取法得到ab 3(4) 若只有三个括号取b,共有C4种取法得到ab 4(5) 若每个括号都取b,共有C4种取法得到b

4134322引导学生发现:原始展开式中确有同类项存在,且确实可省去“合并”

04132223344因此ab3C4aC4abC4abC4abC4b 4问题6

其个数,为何恰好应为该项的系数?

nrr问题7 ab在合并后的展开式中,ab的系数应该是多少?有理由吗? n问题8

那么,该如何将ab轻松、清晰地展开?请同学们归纳猜想 学生们快速地说出

nabn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*

我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢?

思路:证明中主要运用了计数原理!

① 展开式中为什么会有那几种类型的项?

abn是n个ab相乘,展开式中的每一项都是从这n个ab中各任取一个字母相

nk乘得到的,每一项都是n次的。故每一项都是a② 展开式中各项的系数是怎么来的?

bk的形式,k0,1,2,,n

kankbk是从n个ab中取k个b,和余下nk个a相乘得到的,有Cn种情况可以得到

kankbk,因此,该项的系数为Cn

定义:一般地,对于任意正整数n,上面的关系式也成立,即有

abn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*

n注:(1)公式左边叫做二项式,右边叫做ab的二项展开式

(2)定理中的a,b仅仅是一种符号,它可以是任意的数或式子什么的,只要是两项相加的n次幂,就能用二项式定理展开

例:把b换成b,则

abn0n1n1n2n22knkknnCnaCnabCnab1Cnab1CnbnN*

kn练习:令a1,bx,则

1xn01122kknnCnCnxCnxCnxCnxnN*

问题9 二项式定理展开式中项数、指数、系数特点是什么?哪一项最有代表性

公式特征:

(1) 项数:共有n1项

(2) 指数规律:

① 各项的次数都等于二项式的系数n(关于a与b的齐次多项式)

② 字母a按降幂排列,次数由n递减到0;字母b按升幂排列,次数由0递增到n

knkk(3) 二项式展开式的通项:Tk1Cnab,k0,1,2,,n

012knk(4) 二项式系数:依次为Cn。这里Cn(k0,1,2,,n)称为二,Cn,Cn,Cn,Cn项式系数

现在同学们能告诉老师8100天后星期几吗?

思考了一会儿,马上有同学大声喊:把8写成7+1,再进行展开,余数是多少,就是星期几 老师故意问:为什么要写成7+1,这时,所有学生都明白了,因为一个星期7天,所以

n810071展开式中除了最后一项外,其余的项都是7的倍数,因此余数为Cn1,故100应为星期四。

1例

1求2x的展开式

x方法一:直接展开

112技巧:将根式先化成幂的形式,再进行计算,要简单很多。即原式变成2xx2

66方法二:先合并化简,再展开

建议用第二种方法简单些。

变式一:展开式中的常数项是多少? 变式二:展开式中的第3项是多少?

变式三:展开式中的第3项的系数是多少? 变式四:展开式中的第3项二项式系数是多少?

注意:二项式系数和系数是两个不同的概念,二项式系数就是一个组合数,与a,b无关;系数与a,b有关。

2(1)求(12x)7的展开式的第4项的系数和第4项的二项式系数

1

3(2)x的展开式中x的系数和中间项

x例3

求(xa)12的展开式中的倒数第4项 9小结:(1)注意二项式定理中二项展开式的特征

(2)区别二项式系数、项的系数

(3)掌握用通项公式求二项式系数、项的系数及项。 作业:P37 4,5 教学反思:本节课先用今天星期几的问题创设问题情境,一下子把全班学生的学习积极性都调动起来了,当大家不知道老师葫芦里卖的什么药时,老师由浅入深的提问,最后问到8100天后星期几,从而引出今天的课题:二项式定理。给大家设置这个悬念后,紧接着又进行一系列的问题教学,让学生自己去探究去回答,最后学生之间合作交流归纳猜想出二项式定理的展开式,整个过程顺理成章地完成。

推荐第8篇:二项式定理教学反思

二项式定理教学反思

二项式定理是代数乘法公式的推广,这节课的内容安排在计数原理之后进行学习,一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用;另一方面是由于二项式系数是一些特殊的组合数,由二项式定理可导出一些组合数的恒等式,这对深化组合数的认识有好处.再者,二项式定理也为学习随机变量及其分布作准备,它是带领我们进入微分学领域大门的一把金钥匙.运用二项式定理还可以解决如整除、近似计算、不等式证明等数学问题.总之,二项式定理是综合性较强、具有联系不同内容作用的知识。

教学目标(1)理解二项式定理是代数中乘法公式的推广,能利用计数原理证明二项式定理,理解并掌握二项式定理;(2)通过二项式定理的“发现”和证明,培养观察、分析、归纳、推理能力,体会从特殊到一般的思维方式;(3)培养自主探究意思、合作精神,体验二项式定理的发现和创造历程,感受和体验数学的简洁美、和谐美和对称美。

教学重点:用计数原理分析abn的展开式,得到二项式定理。 教学难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。

数学教学过程从本质上来说是教师促进学生思维发展、人格完善的过程,促进学生思维发展的载体是“问题”,问题通常有两种来源:一是教师抛出“问题”;二是学生提出“问题”。但目前数学教学过程中,绝大多数问题是教师抛给学生的,学生的“问题意识”和“如何提问”有待教师的发掘。本节课再现了二项式定理发现的历史背景,让学生体验问题发现的过程.教师在教学过程中为学生搭建“脚手架”从根本上来说是对教学过程的一种管理与调控,这种管理与调控是建立在对学生认知基础和认知规律的认识之上的,也就是要解决何时搭建“脚手架”、搭建什么样的“脚手架”。“脚手架”搭建过早、过细,学生的思维被牵着走,缺少自由发挥的空间,从问题的提出到问题的解决,一路顺风顺水,不仅无法体验思维过程中的各种尝试,也缺少思维挫败的经历,及至面临挫败时缺少主动求新、求变的意识。二项式定理的系数规律是无法观察出来的,学生思维定势是“先具体再抽象,先特殊再一般”,究竟是否让学生经历“观察的挫败”是教学设计中争议的又一焦点。一些教师害怕在此耽误时间,来不及处理后面的教学内容而主张放弃,但综合考虑学生的认知规律、人格的完善、创新意识的培养,这是不可或缺的环节,经历“观察的挫败”是手段,目的是要培养学生“碰壁”之后主动求变、求新的意识。这就需要教师指导学生换个角度去思考、去探索、去发现,促使其求变。至此,关于争议二的问题也彻底解决了。二项式定理的证明过程与发现过程的一致性,为学生看书自学奠定了基础。在教学设计过程中,这一证明过程更适合学生通过阅读自学、总结、证明。这种安排不仅有利于落实新课程标准的理念,还利于学生学习能力的培养。 每节数学课上都有练习,二项式定理的正用、逆用、回归本质求系数等使学生在变化的数学情景下得到了技能训练,有利于学生对数学技能的掌握。

推荐第9篇:二项式定理教学反思

《二项式定理》教学反思

汾口中学

叶轶群

《二项式定理》这节内容我采用以知识点 “问题串”的形式引导学生自主探究的教学方法,在循序渐进中以小问题带动大问题,环环相扣,将知识点落实。而学生在自主讨论中,初步认识二项式定理是初中多项式乘法的继续,初步掌握展开式的规律,充分而有效地训练了学生的思维。

整节课在学生讨论探究中进行,通过一连串层层递进的问题,引导学生掌握展开式形成的规律,比如:(问题1:请在多项式中圈出能得到(a+b)4展开式中的项a4 b0的单项式a:(a+b)4 =(a+b)(a+b)(a+b) (a+b)--------- 问题2:请在多项式中用不同颜色的笔标出得到(a+b)4展开式中的项a3 b的单项式a和b (a+b)4 =(a+b)(a+b)(a+b) (a+b) (a+b)4 =(a+b)(a+b)(a+b) (a+b) (a+b)4 =(a+b)(a+b)(a+b) (a+b) (a+b)4 =(a+b)(a+b)(a+b) (a+b)------------ 问题3:请你用组合的观点来探究(a+b)4 =(a+b)(a+b)(a+b) (a+b)展开式中的项a2 b2的系数) 以上三个问题由浅入深,由简单到复杂,引导学生体验(a+b)4展开式中的特殊项得来的过程,通过学生自己用笔动手圈注和问题“你是如何做到标注时不重复无遗漏的?”的引导,让学生自己体验的到这些特殊的项需要两个步骤:先取b再取a,进而可以轻而易举的把对特殊项的探究的方法转移到计数原理上来。然后马上引

导学生完成问题4:类比以上探究项a4b0和a3b 及a2b2构成规律的方法, 请你写出 (a+b)4 二项展开式的每一项(把展开式按照a的降幂,b的升幂进行排列)(a+b)4 = ____ 。

在这个过程中非常具有挑战性问题的引入能使学生产生新奇感,激发了学生的学习兴趣和积极性.进一步把这一研究方法推广到展开式的每一项,从而得到(a+b)4二项展开式,又把这一问题往前推进了一步,引导学生找出展开式的通项,进而推广到一般情形。

教学中我特别注重运用通项意识,凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。但也有意外出现,对于二项式定理的逆运用,上课过程中重视不够,以为学生在推导展开式的同时也能够推导它的逆公式,所以在上课过程中一笔带过,导致作业中的问题比较多,基于此,在另一个班级的教学中,我决定把这个知识点跟展开式的推导融为一体来落实知识点。

本节课的亮点:

1、从“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,带给学生积极的情感体验和无尽的思考.数学思想、方法和数学文化得到了较好的体现.

2、课堂小结顺其自然地引导学生把握知识之间的内在本质联系,引导学生用扩展、深化等方式提出新问题,并用问题链引向课外或后续课程。

3、掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。教材的探求过程将归纳推理与演绎推理

有机结合起来,教学过程中,学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发他们发现一般性问题的解决方法

4、本节课教学,我采用“问题――探究”的教学模式,以“问题链”组织课堂教学,让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

本节课不足之处:

1、我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课。

2、本节课教学过程中还不够生动有趣。正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用?

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。

推荐第10篇:二项式定理教学反思

二项式定理教学反思

黄慧莹

二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用.

本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题――探究”的教学模式, 把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.

教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解.

本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考.

不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究.

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.

第11篇:二项式定理教学反思

二项式定理教学反思

(一)

下午在安庆一中高二(6)班上了一节数学展示课,课堂学生的反应和专家的点评,都让我受益匪浅,主要体会如下:

1、学生能机积极配合,情绪高涨。据了解,高二(6)班学生基础较好,整体素质较高。由于是新老师,学生不了解我的教学风格,开头几分钟,学生的积极性还没有完全调动起来,但随着时间的推进,课堂氛围不断进入高潮。在遇到疑难问题时,只要我稍加点拨,都能立即化解。特别是最后一道天津高考题,具有挑战性,需要较高的逆向思维水平,但一名学生在很短的时间内就看出了它的结构特点,作出了完整的回答,使学生和听课老师眼睛一亮。加上我及时总结的“数感、式感和图感”又让学生耳目一新,增添了课堂色彩。

2、数学思想、方法和数学文化得到了较好的体现。孙主任点评中的“课堂教学要有高贵和丰满的学科气质”,我认为对数学课堂来说,就是要体现数学思想、方法和数学文化,让数学课堂有“数学味”。课堂中,提到的数学的两重性“直觉与逻辑”,牛顿的“没有大胆的猜想就没有伟大的发现”,二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,反例C62就不是偶数等等,都带给学生积极的情感体验和无尽的思考。“真诚、深刻、丰富”是课堂永恒的追求。

3、基本技巧和基本方法可能没有很好落实。本节课的教学重点是二项式定理的探求过程,而简单的应用则次之。基于这种想法,我在引导发现定理上花的时间较多,证明过程多媒体详细展示,但最后没有点到“还可以用数学归纳法证明”是一个疏忽。同时对将(p-q)7展开这种问题没有书写示范,以致不少学生书写不规范或弄错,板演的学生就有好几处错误,我也没有详细板书订正。我想,好在还有第二节课的加强,先让学生对此内容有点兴趣,再去强化运算的正确性也不迟。

4、课堂上如何放手让学生自主学习。多位专家评课中提到数学课堂上如何放手让学生自主学习,这也是新课程大力倡导的。我认为,像这样面对新学生的展示课,难以操作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上2先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以操作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何实施自主学习值得深入研究。

5、数学教师要不断提高专业水平和人文素养。范梅南有一句名言:教学就是“即兴创作”,依托的是教师的文化底蕴和精神修养。对数学教师来说,我认为是专业水平和人文素养。专业水平可以帮助你确定有梯度的思维目标,创设有价值的思维情景;人文素养可以帮助你确定良好的情感目标,营造积极的情感情景。速度、效果、体验是判别有效课堂的三要素,其中就蕴涵着对学生探索精神、创新精神的唤醒和弘扬,创新能力的发展和提升,创造型人格的生成与确立。数学教师要多读点文学作品,打造有诗意的数学课堂。

二项式定理教学反思

(二)

二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用。

本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题探究”的教学模式, 把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程。

本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依。

教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,()而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。

本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑证明”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考。

不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。

二项式定理教学反思

(三)

首先感谢市教育局各位专家领导给予高度评价,并提出宝贵意见和建议。你们的肯定将激励我在教育事业上勇往直前,我会走得更好,走的更远。你们的建议会让我不断的反省自己,改正自己,完善自己。反思后则奋进,存在问题就整改,发现问题则深思,找到经验就升华。我要牢记你们所说的话“应该向专家型教师学习,向这个方向努力!”

上班已有六年时间,带了两轮的高中数学,在知识方面我严格要求自己,勤思多问,“教然后而知困”,不断发现陌生的自己,促使自己拜师求教,书海寻宝,不断的提高自己的专业素质。在教学技能方面也是严格按照学校的要求多听课、多请教、多反思;备好每一堂课,上好每一堂课;课后做好教学反思,注意课堂中的每一个细节;同时也大胆的尝试和实践一些新的教学手段、思路和方法,形成和完善自己独有的教学风格。

学习的过程是新旧知识互相碰撞的过程,旧知识不断被新知识所补充所完善。通过学习者不断的思维,才能把新的知识内化,来完善原有的知识结构。对于数学教学而言,教会学生思维才是根本,无论教师的讲解多么精彩,思维活动过程是任何人无法替代的。

在本节课的教学设计中,我很好的把握了重点和难点,通过简单例子反复强调二项展开式的特点和通项公式的特点及功能,学生的理解很轻松。对于例题的选择也是结合近几年的高考特点由浅入深,总体的设计还比较满意。但在上课的过程中忽视了一个很重要的因素——学生。我班是一个文科普班,数学基础不是很好,虽然是复习课,但仍有部分学生跟没学过一样,我在讲课过程中语速过快,一部分学生没能跟上。因此在今后的教学中,一定要多关注学生的原有知识水平和个性差异,灵活机动地随机处理课堂上的问题,把学生出现的错误当成是一种珍贵的教学资源,并加以合理利用。同时也要认真观察学生的微妙变化和反应情况,随机的调整教课的速度,让每个学生都能消化吸收。今后我要在讲课中多下功夫,多收集好的教学方法,教案;多积累典型的例题;认真研究考试大纲,把握教学的重点和难点,上好每一堂课。在其他细节方面,我将以最快的速度去改进、完善。

最后再次感谢各位领导!我将争取早日成为一名优秀的数学教师。

第12篇:二项式定理教学设计

《二项式定理》教学设计

1.教学目标

知识技能:理解二项式定理,记忆二项展开式的有关特征,能对二项式定理进行简单应用.

过程方法:通过从特殊到一般的探究活动,经历“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.

情感、态度和价值观:通过对二项式定理的研究,掌握展开式的结构特点,体验数学公式的对称美、和谐美,了解杨辉、牛顿等数学家做出的巨大贡献.

2.教学过程

探索研究二项式定理的内容

从学生比较熟悉的完全平方公式入手,去观察,猜想

02122(ab)2a22abb2C2aC2abC2b

三次方的让学生按照多项式乘法进行运算在合并,不合并之前是几项,为什么?

(分步乘法计数原理)

0312233(ab)3a33a2b3ab2b3C3aC3abC3ab2C3b

每一项中字母a,b的指数和相同,项的个数有n1项

00每个都不取b的情况有1种,即C4种,所以a4的系数是C4; 11恰有1个取b的情况下有C4种,所以a3b的系数是C4; 22恰有2个取b的情况下有C4种,所以a2b2的系数是C4; 33恰有3个取b的情况下有C4种,所以ab3的系数是C4; 444个都取b的情况下有C4种,所以b4的系数是C4; 0413222344因此(ab)4C4aC4abC4abC4ab3C4b.

归纳、猜想(ab)n

0n1n12n22(ab)nCnaCnabCnabknkkCnabnnCnb(nN)

设问:

(1) 将(ab)n展开,有多少项?

(2) 每一项中,字母a,b的指数有什么特点? (3) 字母a,b指数和始终是多少? (4) 如何确定ankbk的系数?

教师引导学生观察二项式定理,从以下几方面强调: (1) 项数规律:n1项;

(2) 次数规律:字母a,b的指数和为n,字母a的指数由n递减至0,同

1 时,字母b的指数由0递增至n;

(3) 二项式系数规律:下标为n,上标由0递增至n;

knkk(4) 通项:Tk1Cnab指的是第k1项,不是第k项,该项的二项式系k数是Cn

板书以上几点 3.例题处理

51例1:(1)在2x的展开式中

x(1)请写出展开式的通项。 (2)求展开式的第4项。

(3)请指出展开式的第4项的系数,二项式系数。

3(4)求展开式中含 x 的项。

课件展示解题过程

自主探究:在12x的展开式中,求第4项,并指出它的二项式系数和系数

7是什么?

独立完成,爬黑板

01合作探究:设n为自然数,化简Cn2nCn2n11Cnk2nk1Cnn

kn

分组讨论,交流想法

4.归纳小结

学生的学习体会与感悟; 教师强调:

(1)主要探究方法:从特殊到一般再回到特殊的思想方法

(2)从特殊情况入手,“观察——归纳——猜想——证明”的思维方法,是人们发现事物规律的重要方法之一,要养成“大胆猜想,严谨论证”的良好习惯.

(3)二项式定理每一项中字母a,b的指数和为n,a的指数从n递减至0同时b的指数由0递增至n,体现数学的对称美、和谐美.二项式系数还有哪些规律呢?希望同学们在课下继续研究、能够有新的发现.

2 5.作业 (1)巩固型作业:

课本36页习题1.3 A组

1、

3、4(1)(2)5 (2)思维拓展型作业:(查阅相关资料) 查阅有关杨辉一生的主要成就。

012探究二项式系数Cn,Cn,Cn,n 有何性质.,Cn3

第13篇:二项式定理教学设计

二项式定理

一、教学目标

1.知识目标:掌握二项式定理及其简单应用

2.过程与方法:培养学生观察、归纳、猜想能力,发现问题,探求问题的能力,逻辑推理能力以及科学的思维方式。

3.情感态度和价值观:培养学生勇于探索,勇于创新的个性品质,感受和体验数学的简洁美、和谐美和对称美。

二、教学重点、难点

重点:二项式定理的发现、理解和初步应用及通项公式 难点:展开式中某一项的二项式系数与该项的系数的区别

三、教学过程

创设问题情境:

今天是星期三,15天后星期几,30天后星期几,8100天后星期几呢?

前面几个问题全班所有学生都大声地回答出来了,最后一个问题大家都很迷惑,有些学生试图用计算器算,还是觉得很复杂,学习完这节课我们就知道答案了,并且我们不用查日历就能知道未来任何一天是星期几

新课讲解:

问题

1abdc的展开式有多少项?有无同类项可以合并?

由于这一节是在学生学习了两个计数原理和排列组合知识之后学习的,所以学生能够快速的说出答案。

问题

2abb的ab原始展开式有多少项?有几项是同类项?项是怎样构成a的?有规律吗?

学生根据乘法展开式也很快得出结论 问题

3abbaa2bab的

3原始展开式有多少项?经合并后又只能有几项?是哪几项?

学生仍然根据乘法公式算出了答案 问题

4abbaaba的bab的原始展开式有多少项?

44问题

5你能准确快速地写出ab的原始展开式的16项吗?经合并后,又只能有哪几项?

此时,学生能说出其中的一两项,并不能全部回答出来所有的项,思维觉察到麻烦,困难,易出错——借此“愤悱”之境,有效的实现思维的烘热)

启发类比:4个袋中有红球a,白球b各一个,每次从4个袋子中各取一个球,有什么样的取法?各种取法有多少种? 在4个括号(袋子)中 问题6

其个数,为何恰好应为该项的系数?

nrr问题7 ab在合并后的展开式中,ab的系数应该是多少?有理由吗? n问题8

那么,该如何将ab轻松、清晰地展开?请同学们归纳猜想 学生们快速地说出

nabn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*

我们数学讲究逻辑地严密性和知识的严谨性,大家猜想地很正确,那么我们怎么来证明呢?

思路:证明中主要运用了计数原理!

① 展开式中为什么会有那几种类型的项?

abn是n个ab相乘,展开式中的每一项都是从这n个ab中各任取一个字母相

nk乘得到的,每一项都是n次的。故每一项都是a② 展开式中各项的系数是怎么来的?

bk的形式,k0,1,2,,n

kankbk是从n个ab中取k个b,和余下nk个a相乘得到的,有Cn种情况可以得到

kankbk,因此,该项的系数为Cn

定义:一般地,对于任意正整数n,上面的关系式也成立,即有

abn0n1n1n2n22knkknnCnaCnabCnabCnabCnbnN*

n注:(1)公式左边叫做二项式,右边叫做ab的二项展开式

(2)定理中的a,b仅仅是一种符号,它可以是任意的数或式子什么的,只要是两项相加的n次幂,就能用二项式定理展开

例:把b换成b,则

abn0n1n1n2n22knkknnCnaCnabCnab1Cnab1CnbnN*

kn练习:令a1,bx,则

1xn01122kknnCnCnxCnxCnxCnxnN*

问题9 二项式定理展开式中项数、指数、系数特点是什么?哪一项最有代表性

公式特征:

(1) 项数:共有n1项

(2) 指数规律:

① 各项的次数都等于二项式的系数n(关于a与b的齐次多项式)

② 字母a按降幂排列,次数由n递减到0;字母b按升幂排列,次数由0递增到n

knkk(3) 二项式展开式的通项:Tk1Cnab,k0,1,2,,n

012knk(4) 二项式系数:依次为Cn。这里Cn(k0,1,2,,n)称为二,Cn,Cn,Cn,Cn项式系数

现在同学们能告诉老师8100天后星期几吗?

思考了一会儿,马上有同学大声喊:把8写成7+1,再进行展开,余数是多少,就是星期几 老师故意问:为什么要写成7+1,这时,所有学生都明白了,因为一个星期7天,所以

n810071展开式中除了最后一项外,其余的项都是7的倍数,因此余数为Cn1,故100应为星期四。

1例

1求2x的展开式

x方法一:直接展开

11技巧:将根式先化成幂的形式,再进行计算,要简单很多。即原式变成2x2x2

66方法二:先合并化简,再展开

建议用第二种方法简单些。

变式一:展开式中的常数项是多少? 变式二:展开式中的第3项是多少?

变式三:展开式中的第3项的系数是多少? 变式四:展开式中的第3项二项式系数是多少?

注意:二项式系数和系数是两个不同的概念,二项式系数就是一个组合数,与a,b无关;系数与a,b有关。

2(1)求(12x)7的展开式的第4项的系数和第4项的二项式系数

1

3(2)x的展开式中x的系数和中间项

x例3

求(xa)12的展开式中的倒数第4项 小结:(1)注意二项式定理中二项展开式的特征

(2)区别二项式系数、项的系数

(3)掌握用通项公式求二项式系数、项的系数及项。 作业:P37 4,5 教学反思:本节课先用今天星期几的问题创设问题情境,一下子把全班学生的学习积极性都调动起来了,当大家不知道老师葫芦里卖的什么药时,老师由浅入深的提问,最后问到81009天后星期几,从而引出今天的课题:二项式定理。给大家设置这个悬念后,紧接着又进行一系列的问题教学,让学生自己去探究去回答,最后学生之间合作交流归纳猜想出二项式定理的展开式,整个过程顺理成章地完成。

第14篇:二项式定理教学设计

二项式定理(第一课时)

一、教学目标: 1.知识技能:

(1)理解二项式定理的推导-------分步乘法计数原理的使用 (2)掌握二项式定理极其简单应用 2.过程与方法

培养学生观察、分析、归纳猜想的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式

二、教学重点、难点

重点:二项式定理的发现、理解和初步应用及通项公式 难点:展开式中某一项的二项式系数与该项的系数的区别

三、教学方法:师生互动,讲练结合

四、教 具:多媒体、电子白板

五、教学过程

(一)创设问题情境:

今天是星期二,8天后是星期几?82天后是星期几?8100天后是星期几呢? 前面两个问题全班所有学生都能回答出来,最后一个问题大家都很迷惑,觉得很复杂,今天我们学习的这节课就是告诉我们如何快速准确知道答案,并且我们不用查日历就能知道未来任何一天是星期几。解决这一问题我们应用的就是二项式定理。

(二)引出问题:二项式定理研究的是(ab)n的展开式。

我们知道(ab)2a22abb2, 那么:(ab)3=? (ab)4=?

(ab)100=?

更进一步:(ab)n=? (1)对(ab)2展开式的分析: (ab)2(ab)(ab) 展开后其项的形式为:a2,ab,b2

00考虑b,每个都不取b的情况有1种,即c2 ,则a2前的系数为c2 1恰有1个取b的情况有c12种,则ab前的系数为c2 22恰有2个取b的情况有c2 种,则b2前的系数为c2 0222所以 (ab)2a22abb2c2ac12abc2b

(2)探究1:推导(ab)3的展开式

(ab)3(ab)(ab)(ab)

1 ① 项:

a3

a2b

ab2

b3

013② 系数:C3

C3

C32

C3 0312233③ 展开式(ab)3c3ac3abc3ab2c3b

(3)探究2:仿照上述过程,推导(ab)4的展开式

0432223344(ab)4c4ac14abc4abc4abc4b 0312233与(ab)3c3ac3abc3ab2c3b

0222和(ab)2c2ac12abc2b

一起比较猜想:

0nn12n22knkknn(ab)ncnac1abcab...cab...cnnnnb(nN)

但这种归纳猜想是不完全归纳。

(4)探究3:请分析(ab)n的展开过程,证明猜想

...

ab

...

b ②系数:C

C

...

C

...

C ①项:

an

an1b

0n1nnkknknnn0nn12n22knkknn③展开式:(ab)ncnac1bcnab...cnab...cnb(nN) na(三)二项式定理的分析

0nn12n22knkknn(ab)ncnac1bcnab...cnab...cnb(nN) na①项数:共有n1项;

②次数:各项的次数都是n;

k③二项式系数:Cn(k0,1,2,...n)

knkk④ 二项展开式的通项:Tk1Cnab,(k0,1,2,...n)

(四)课堂练习1.写出(1x)n得展开式.2.写出(ab)n得展开式.

(五)例题 例1.求(2x1x)6得展开式.

2 (1)强调:对于形式较复杂的二项式,应先化简再展开.(2)针对(2x1x)6得展开式,提出下列问题

思考1:展开式的第二项的系数是多少?

思考2:展开式的第二项的二项式系数是多少? 思考3:你能否直接求出展开式的第二项? 思考4:你能否直接求出展开式的常数项? 引出例2 例2 (1)求(12x)7的展开式的第4项的系数和第4项的二项式系数

1

(2)x的展开式中x3的系数

x

(六)小结

(七)作业(提前板书) 1.P374,5题

2.思考:8100天后星期几?

93

第15篇:二项式定理应用2

二项式定理及其应用

一、求某项的系数:

【例1】(1)在(1-x3)(1+x)10的展开式中,x5的系数是多少?(407)

(2)求(1+x-x2)6展开式中含x5的项.(6x5)

二、证明组合数等式:

练习

(12345)

例2 计算:1.9975(精确到0.001).

师:按生戊所谈的方法,大家在自己的笔记本上计算一下. 例3:(1996年全国高考有这样一道应用题)

某地现有耕地10 000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?

例3 如果今天是星期一,那么对于任意自然数n,经过23n+3+7n+5天后的那一天是星期几?

生庚:先将此题转化为数学问题,即本题实际上寻求对于任意自然数n,23n+3+7n+5被7除的余数.

受近似计算题目启发,23n+3=8n+1=(7+1)n+1,这样可以运用

数,7n也是7的倍数,最后余数是1加上5,是6了.

师:请同学们在笔记本上完成此题的解答

(教师请一名同学板演)

解:由于23n+3+7n+5=8n+1+7n+5=(7+1)n+1+7n+5

则 23n+3+7n+5被7除所得余数为6 所以对于任意自然数n,经过23n+3+7n+5后的一天是星期日. 师:请每位同学在笔记本上完成这样一个习题:7777-1能被19整除吗? (教师在教室内巡视,3分钟后找学生到黑板板演) 解:7777-1=(76+1)77

由于76能被19整除,因此7777-1能被19整除. 师:请生辛谈谈他怎样想到这个解法的?

生辛:这是个幂的计算问题,可以用二项式定理解决.如果把7777改成(19+58)77,显然展开式中最后一项5877仍然不易判断是否能被19整除,于是我想到若7777-1能被38,或能被57,或能被76,或能被95整除,必能被19整除,而76与77只差1,故欲证7777-1被19整除,只需证(76+1)77被76整除.得到了以上的解法.

师:二项式定理解决的是乘方运算问题,因此幂的问题可以考虑二项式定理.下面我们解一些综合运用的习题

例4 求证:3n>2n-1(n+2)(n∈N,且n≥2).

师:仍然由同学先谈谈自己的想法.

生壬:我觉得这道题仍可以用二项式定理解,为了把左式与右式发生联系,将3换成2+1.

注意到:

① 2n+n·2n-1=2n-1(2+n)=2n-1(n+2); ② n≥2,右式至少三项;

这样,可以得到3n>2n-1(n+2)(n∈N,且n≥2).

生癸:根据题设条件有n∈N,且n≥2.用数学归纳法应当可以证明.

师:由于观察习题时思维起点不同,得到了习题不同解法,生×同学从乘方运算这点考虑,想到二项式定理,生×同学从题设条件n∈N考虑,想到数学归纳法.大家要养成习惯,每遇一题,从不同角度观察思考,得到更多解法,使我们思考问题更全面.

用二项式定理证明,生×同学已经讲清楚了证明过程,大家课下在笔记本上整理好,现在请同学们在笔记本上完成数学归纳法的证明.

(教师请一名同学板演)

证明:①当n=2时,左式=32=9,右式=22-1(2+2)=2×4=8,显然9>8.故不等式成立. ②假设n=k(k∈N且k≥2)时,不等式成立,即3k>2k-1(k+2),则当n=k+1时, 由于 左式=3k+1=3·3k>3·2k-1(k+2)=3k·2k-1+3·2k. 右式=2(k+1)-1[(k+1)+2]=2k(k+3)=k·2k+3·2k, 则 左式-右式=(3k·2k-1+3·2k)-(k·2k+3·2k)

=3k·2k-1-2k·2k-1=k·2k-1>0. 所以 左式>有式.故当n=k+1时,不等式也成立.

由①,②不等式对n≥2,n∈N都成立.

师:为了培养综合能力,同学们在笔记本再演算一道习题:

设n∈N且n>1,求证:

(证明过程中可以运用公式:对n个正数a1,a2,…,an,总有

(教师在教室巡视,过2分钟找一名同学到黑板板演第(1)小题,再过3分钟找另一名同学板演第(2)小题)

师:哪位同学谈一谈此题应怎样分析?

生寅:第(1)小题左式与右式没有直接联系,应把它们分别转化,

列前n项的和,由求和公式也能得到2n-1.因此得到证明. 第(2)小题左式与右式也没有直接联系.根据题目给出的公式要

师:根据式子的结构想有关知识和思考方法是分析问题的一种重要方法,要在解题实践中掌握.

本节课讨论了二项式定理主要应用,包括组合数的计算、近似计算、整除和求余数的计算以及与其他数学知识的综合应用.当然,二项式定理的运用不止这些,凡是涉及到乘方运算(指数是自然数或转化为自然数)都可能用到二项式定理.认真分析习题的结构,类比、联想、转化是重要的找到解题途径的思考方法,希望引起同学们的重视.

作业

1.课本习题:P253习题三十一:6,7,10; 2.课本习题:P256复习参考题九:15(2). 3.补充题:

课堂教学设计说明

1.开始练习起着承上启下的作用.这三题既复习了二项式定理及其性质,又考查了数学基本思想,如等价变换、未知转化已知,取特殊值,利于本节课进行,又培养了学生预习复习的学习习惯.

2.只有学生自己动手、动脑、动口才能真正把知识学到手,才能培养思维能力、计算能力、表达能力、分析问题解决问题能力.因此课堂教学一定以学生为主体,体现主体参与.

3.学生的回答不会像教案写的那样标准,教师要因势利导,帮助学生提高分析能力.

第16篇:届高考数学一轮复习10.5 二项式定理教案

10.5 二项式定理

●知识梳理

1.二项展开式的通项公式是解决与二项式定理有关问题的基础.2.二项展开式的性质是解题的关键.3.利用二项式展开式可以证明整除性问题,讨论项的有关性质,证明组合数恒等式,进行近似计算等.●点击双基

9291.已知(1-3x)=a0+a1x+a2x+…+a9x,则|a0|+|a1|+|a2|+…+|a9|等于

999A.

2 B.4

C.

3 D.1 解析:x的奇数次方的系数都是负值,

∴|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9.∴已知条件中只需赋值x=-1即可.答案:B 2.(2004年江苏,7)(2x+x)的展开式中x的系数是 A.6

4

42B.12

4

C.24

4

2

D.48 解析:(2x+x)=x(1+2x),在(1+2x)中,x的系数为C24·2=24.答案:C 3.(2004年全国Ⅰ,5)(2x-A.14

33

1x)的展开式中常数项是

C.42

3

77

B.-14

D.-42

r7r

)=C72·

r解析:设(2x-1xr)的展开式中的第r+1项是Tr1=C7(2x)7r(-

1xr3(7x)r2(-1)·x,

当-r61+3(7-r)=0,即r=6时,它为常数项,∴C67(-1)·2=14.23213答案:A 4.(2004年湖北,文14)已知(x+x

5)的展开式中各项系数的和是128,则展开式

n中x的系数是_____________.(以数字作答)

解析:∵(x+x3213)的展开式中各项系数和为128,

nn∴令x=1,即得所有项系数和为2=128.

r∴n=7.设该二项展开式中的r+1项为Tr1=C7(x)7r·(x3213r)=C7·xr6311r6,

令6311r5=5即r=3时,x项的系数为C37=35.6答案:35

5.若(x+1)=x+…+ax+bx+cx+1(n∈N),且a∶b=3∶1,那么n=_____________.2解析:a∶b=C3n∶Cn=3∶1,n=11.nn32*答案:11 ●典例剖析

【例1】 如果在(x+理项.解:展开式中前三项的系数分别为1,由题意得2×

124x)的展开式中,前三项系数成等差数列,求展开式中的有

nnn(n1),, 28n(n1)n=1+,得n=8.281·xr2163r4设第r+

1r项为有理项,Tr1=C8·

,则r是4的倍数,所以r=0,4,8.351x,T9=.28256x评述:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r.

13【例2】 求式子(|x|+-2)的展开式中的常数项.

|x|11113解法一:(|x|+-2)=(|x|+-2)(|x|+-2)(|x|+-2)得到|x||x||x||x|13常数项的情况有:①三个括号中全取-2,得(-2);②一个括号取|x|,一个括号取,

|x|有理项为T1=x,T5=41一个括号取-2,得C13C2(-2)=-12,

∴常数项为(-2)+(-12)=-20.解法二:(|x|+31136-2)=(|x|-).|x||x|设第r+1项为常数项,

r则Tr1=C6·(-1)·(r1r6r)·|x|6r=(-1)·C6·|x|62r,得6-2r=0,r=3.|x|∴T3+1=(-1)·C36=-20.3思考讨论

(1)求(1+x+x+x)(1-x)的展开式中x的系数; 23

7

444-4)的展开式中的常数项; x34503(3)求(1+x)+(1+x)+…+(1+x)的展开式中x的系数.(2)求(x+1x4746444解:(1)原式=(1-x)=(1-x)(1-x),展开式中x的系数为(-1)C6-

1x1=14.

- 2

1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为

20A.20 B.2C.2D.2-1 220解析:C120+C20+…+C20=2-1.

20答案:D 2.(2004年福建,文9)已知(x-则展开式中各项系数的和是

8 A.2B.3r解析:Tr1=C8·x8-r-1

a8

)展开式中常数项为1120,其中实数a是常数,x

C.1或3

r8-2r8

D.1或2

8r·(-ax)=(-a)C8·xr.令8-2r=0,∴r=4.4∴(-a)C8=1120.∴a=±2.4当a=2时,令x=1,则(1-2)=1.

88当a=-2时,令x=-1,则(-1-2)=3.答案:C 3.(2004年全国Ⅳ,13)(x-

8

1x)展开式中x的系数为_____________.

85

r解析:设展开式的第r+1项为Tr1=C8x8-r·(-

1xr)=(-1)C8xrr83r2.令8-3r522=5得r=2时,x的系数为(-1)·C8=28.21xxr答案:28 4.(2004年湖南,理15)若(x+

323

)的展开式中的常数项为84,则n=_____________.

93nr2n解析:Tr1=Crn(x)3

n-r·(x)=Crn·x.9r=0,∴2n=3r.2∴n必为3的倍数,r为偶数.令3n-

6试验可知n=9,r=6时,Crn=C9=84.答案:9 5.已知(xlgx+1)展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,n求x的值.2n1n解:由题意Cnn+Cn+Cn=22, 10即C2n+Cn+Cn=22,

∴n=6.∴第4项的二项式系数最大.lgx∴C3)=20000,即x6(x3

3lgx=1000.∴x=10或x=1.10培养能力

652116.若(1+x)(1-2x)=a0+a1x+a2x+…+a11x.求:(1)a1+a2+a3+…+a11;(2)a0+a2+a4+…+a10.65211解:(1)(1+x)(1-2x)=a0+a1x+a2x+…+a11x.令x=1,得 a0+a1+a2+…+a11=-26,

又a0=1,

6所以a1+a2+…+a11=-2-1=-65.(2)再令x=-1,得

a0-a1+a2-a3+…-a11=0.

①+②得a0+a2+…+a10=

16

(-2+0)=-32.2评述:在解决此类奇数项系数的和、偶数项系数的和的问题中常用赋值法,令其中的字母等于1或-1.mn127.在二项式(ax+bx)(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项.(1)求它是第几项;(2)求r解:(1)设Tr1=C12(ax)

ma的范围.br·(bx)=C12anr12-rrm(12-r)+nr12-rbx为常数项,则有m(12-r)+nr=0,即m(12-r)-2mr=0,∴r=4,它是第5项.(2)∵第5项又是系数最大的项,

43C12ab≥C12ab, 84

93

∴有 45C12ab≥C12ab. 8475

12111098412111093

ab≥ab,

43232a99∵a>0,b>0,∴ b≥a,即≤.44ba88a9由②得≥,∴≤≤.5b4b5由①得8.在二项式(x+124x)的展开式中,前三项的系数成等差数列,求展开式中的有理项.

n分析:根据题意列出前三项系数关系式,先确定n,再分别求出相应的有理项.解:前三项系数为C0n,

11121220Cn,Cn,由已知C1=C+Cn,即n-9n+8=0, nn244解得n=8或n=1(舍去).

rTr1=C8(x)(2x)8-r4-rr=C8·

414.·xr23r∵4-3r∈Z且0≤r≤8,r∈Z, 44∴r=0,r=4,r=8.∴展开式中x的有理项为T1=x,T5=评述:展开式中有理项的特点是字母x的指数4-探究创新

9.有点难度哟!

351x,T9= x-2.82563r3r∈Z即可,而不需要指数4-∈N.441n*)

11[1()n1]1111111n12++…+2.所以2

nr1.在使用通项公式Tr1=Crb时,要注意: nar(1)通项公式是表示第r+1项,而不是第r项.(2)展开式中第r+1项的二项式系数Crn与第r+1项的系数不同.(3)通项公式中含有a,b,n,r,Tr1五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n是正整数,r是非负整数且r≤n.2.证明组合恒等式常用赋值法.●教师下载中心 教学点睛

1.要正确理解二项式定理,准确地写出二项式的展开式.2.要注意区分项的系数与项的二项式系数.3.要注意二项式定理在近似计算及证明整除性中的应用.4.通项公式及其应用是二项式定理的基本问题,要熟练掌握.拓展题例

10343【例题】 求(a-2b-3c)的展开式中含abc项的系数.10解:(a-2b-3c)=(a-2b-3c)(a-2b-3c)…(a-2b-3c),从10个括号中任取3

个括号,从中取a;再从剩余7个括号中任取4个括号,从中取-2b;最后从剩余的3个括号

343434中取-3c,得含abc的项为C10aC7·(-2b)C33(-3c)=C10C7C32(-3)abc.所以343

3

4

3

334334含abc项的系数为-C10C7×16×27.343

第17篇:数学 排列、组合、二项式定理基本原理 数学教案

教学目标

(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;

(2)能结合树形图来帮助理解加法原理与乘法原理;

(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;

(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;

(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

教学建议

一、知识结构

二、重点难点分析

本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。

三、教法建议

关于两个计数原理的教学要分三个层次:

第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).

第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):

①用0,1,2,……,9可以组成多少个8位号码;

②用0,1,2,……,9可以组成多少个8位整数;

③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;

⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.

第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理. 教学设计示例

加法原理和乘法原理

教学目标

正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力. 教学重点和难点

重点:加法原理和乘法原理.

难点:加法原理和乘法原理的准确应用. 教学用具

投影仪. 教学过程设计

(一)引入新课

从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.

今天我们先学习两个基本原理.

(二)讲授新课

1.介绍两个基本原理

先考虑下面的问题:

问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.

这个问题可以http://jiaoan.cnkjz.com/>总结为下面的一个基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.

请大家再来考虑下面的问题(打出片子——问题2):

问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?

这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法. 2.浅释两个基本原理

两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.

比较两个基本原理,想一想,它们有什么区别?

两个基本原理的区别在于:一个与分类有关,一个与分步有关.

看下面的分析是否正确(打出片子——题1,题2):

题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个. 1~10中一共有N=4+2+1=7个合数.

题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?

第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.

题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.

从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.

(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)

进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.

如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.

也就是说:类类互斥,步步独立.

(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)

(三)应用举例

现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.

例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)

(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是 N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.

(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原

第18篇:高中数学知识点总结二项式定理

高中数学知识点总结---二项式定理

0n01n1rnrrn0n1.⑴二项式定理:(ab)nCnabCnabCnabCnab.展开式具有以下特点: ① 项数:共有n1项;

012rn② 系数:依次为组合数Cn,Cn,Cn,,Cn,,Cn;

③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑵二项展开式的通项.(ab)n展开式中的第r1项为:Trnrrbr1Cna(0rn,rZ).⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;

②二项展开式的中间项二项式系数最大......I.当n是偶数时,中间项是第

n2n1项,它的二项式系数C2n最大;

II.当n是奇数时,中间项为两项,即第最大.③系数和:

CnCnCn2C024nCnCn01nn13nCnn12项和第

n12n1n12n1项,它们的二项式系数C2nCC2n1

附:一般来说(axby)n(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求...........

AkAk1,AkAk1AkAk1或(Ak为TAAk1k解.当a1或b1时,一般采用解不等式组的绝对值)的办法来求解.

k1的系数或系数⑷如何来求(abc)n展开式中含apbqcr的系数呢?其中(abc)[(ab)c]nrnnp,q,rN,且

pqrn把

rnrr(ab)C,另一方面在视为二项式,先找出含有Cr的项Cn(ab)中含有bq的项为pqrCnraqnrqbCnrabqqpq,故在(abc)n中含apbqcr的项为

(nr)!n!r!q!p!pqrnpCrCnCnrabc.其系数为CnCnrrqrqn!r!(nr)!q!(nrq)!CnC.2.近似计算的处理方法.

当a的绝对值与1相比很小且n不大时,常用近似公式(1a)n1na,因为这时展开式的后面部分Cn2a2Cn3a3Cnnan很小,可以忽略不计。类似地,有(1a)n1na但使用这两个公式时应注意a的条件,以及对计算精确度的要求.

第19篇:二项式定理教学总结(教学反思)

高校素质课《二项式定理》总结

高二数学:×××

二项式定理是选修2-3的1.3节的第一课时,本节课是在学习了排列组合的基础上学习的,并为后面学习概率中的二项分布奠定了基础,所以它是承上启下的一节课。根据本节教材特点及学生的认知结构确定本节课的教学重点为:二项定理的推导及通项公式的运用。由于二项式定理的导出对学生来讲有一定的难度所以确定本节课的难点为:二项式定理的推导。

在教学中,采用“四步骤八环节”的教学模式, 把整个课堂分为创设情境,导入设疑;自学释疑,同伴互助;训练操作,反馈矫正;延伸迁移,归纳小结。让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.

设计亮点

一、导入

结合今天周三,高考是周几,延伸到再过810天的那一天是星期几的问题,将计算方法归纳到用7除的余数问题,特殊到一般:8=7+1,82=(7+1)2=72+2*7+1,83=(7+1)3=73+3*72+3*7+1,那810=(7+1)10又如何展开呢?,将810转化为(7+1)10的展开式问题,导入新课研究(a+b)n的展开式。学生思考研究方法,易得特殊到一般。

二、难点的突破

本节难点是二项式定理的推导,我做了以下自学,合作的活动安排来让学生完成探究: 1.引导学生对写出的(a+b)

2、(a+b)

3、(a+b)4的展开式进行下列四个方面的探究:项数;各项次数;字母a、b指数的变化规律;各项系数;猜测(a+b)5的展开式中含哪些项?(a+b)n的展开式中含哪些项?学生思考学生小组讨论,自由发表见解.注:从学生的回答中看出学生能归纳出展开式的项数,次数及每一项中a,b组合的规律,但是说不对每一项的系数。正是教学设计中预设的。用面下方法解决。

2、设计合作探究问题:(a+b)2展开的过程中是如何体现分类加法和分步乘法两个计数原理的?怎么从排列组合的角度解释(a+b)2展开式中每一项的系数?类比归纳完善(a+b)5展开式每一项的系数,(a+b)n展开式每一项的系数?学生自主思考,合作交流完成二项式定理的突破。

三、分析定理的结构特点 挖掘内涵

1、展开式的项数;学生回答5次,9次,m-1次的展开式共多少项?

2、通项;学生回答展开式中第1项,第5项,第8项,第k项,第k+1项分别是什么,从而归纳出通项。

3、二项式系数与项的系数.强调新的名词“二项式系数”,结合学生大胆写出(a-b)n展开式,并说出第7项的系数及二项式系数,自己体会。

四、尝试应用

定理给出后,课本的2个例题略显复杂,所以我给出几个简单小题来巩固定理:(2x+1)4展开式,(x -1-2)5展开式中含x -3的项。再让学生对例一,例二进行演板。预设:

1、学生会展开,不会化简。

2、对通项的作用不明确,不熟悉。解决方法:学生展示,学生改错并提出更好的办法,并总结做题方法。

五、延伸和小结

在完成本节任务外,延伸我重点还是放在定理的挖掘中,采用定理的逆用,及求二项式系数的和。巩固定理的同时挖深定理内涵。小结上让学生总结知识,数学思想方法,典型题目及解题方法等。 不足之处:

我认为在师生互动环节中再多一些效果会更好。但是我认为这样面对学生的展示课,难以操作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以操作, 自主、合作、探究也是走走过场, 没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。有些知识非得老师参与并详尽的启发学生思考得到,而这样做就又好像不是学生学出来的,而是教出来的。以后这方面多想办法,在组织学生活动高效方面下功夫。

总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.学完二项式定理后,二项式定理及通项公式的运用就是以后学习的重点。

2013.05.10

第20篇:二项式定理观课报告

《二项式定理》观课报告

我认真观摩了本模块的路中华老师的上课视频课例《二项式定理》,整个教学过程环环相扣,从简单到复杂,逐层深入。教师在整个教学过程中与学生交流,充分发挥学生的主体地位和教师的主导作用,充分体现了新课改的数学教学理念,充分考虑数学学科的特点,运用多种教学手段和方法积极引导学生主动学习。

二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,也是后继课程某些内容的一个铺垫。运用二项式定理可以解决一些比较典型的数学问题,例如求特定项、系数和、近似计算、整除问题、不等式的证明等,可见平面二项式定理的重要性。

我总结了本课例的几个特点:

一、整个教学过程环环相扣,思路清晰。在教学过程中,路老师提出的几个主要问题,逐层深入,有利于学生的学习。一开始提出三个基本问题,第三个问题是8100天后是星期几。由这个基本问题引入课题,勾起学生对学习数学的兴趣。导入新课后路老师又让学生通过合作探究、分组探究的形式,让学生探究㎡的展开式,通过特殊到一般的解决问题的意识,最后得到二项式定理。然后在给定二项式定理后再一次与引入的问题相呼应。对这个问题的处理使得整节课相对完整,条理清晰。接着逐层引入到坐标表示知识的学习上,过程安排合理,自然顺畅。

二、运用启发式教学,教学方法突出。路老师在整个教学过程中,贯彻启发式教学的方法原则,启发学生自主思考、探究,归纳二项式定理时时候,发挥了每个学生的归纳能力。并通过电脑演示和小组合作探究,让学生感知二项式定理,突出重难点。

我的一点思考:

二项式定理蕴含着常见的数学思想方法:特殊到一般的归纳方法,应用非常广泛,所以对二项式定理的理解与掌握对其他数学知识也有借鉴意义。路老师讲解的内容包括二项式的定理推导及应用。结合我校学生的情况,对于刚接触这个定理的学生而言,许多学生对刚学的定理尚未真正理解它的意义,是否需要在教学中再强化巩固对二项式定理的实质问题的学习,然后应用二项式定理解决实际问题,这也是我的一个疑问。

总的来说,我从路中华老师的课例,学到了怎样把《二项式定理》上得更好,在教学过程中如何引导学生一步步探究出二项式定理,并掌握二项式定理。在专家的点评中学到了对于一节课的设计要从学生的实际出发,一切以符合学生的认知能力为出发点,从而做出优秀的教学设计方案。

数学二项式定理教案模板
《数学二项式定理教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档