人人范文网 教案模板

高中数学数列教案模板(精选多篇)

发布时间:2020-04-18 13:42:50 来源:教案模板 收藏本文 下载本文 手机版

推荐第1篇:高中数学数列递推定理

定理(二阶线性递推数列)

已知数列{an}的项满足an2pan1qan,a1=a,a2=b,nN+,称方程x2pxq0为数列an的特征方程。若x1,x2是特征方程的两个根,则

n1n1

(1)当x1x2时,数列an的通项为anAx1Bx2,其中A,B由

初始值决定;

(2)当x1x2时,数列an的通项为an(A1B1n)x1n1,其中A1,B1由初始值决定。

31

22、已知数列a11,a2,且anan1an2(n3,4,5,),求通项公式an。

44

11

(略解:二阶线性递推数列,x1x2型!x2x,x1x2,用公式得

42

1n1

an(n1)()nn)

22

定理(一次分式递推数列)

已知数列{an}的项满足: a1a且对于nN,都有an1

panq

p、ranh

q、r、hR,且phqr,r0,a1),称方程x

(i) 若a1,则数列{an}为常数数列 (ii)若a1,则数列{

h

r

(1)当特征方程有两个相同的特征根时,

pxq

为数列an特征方程.rxh

为等差数列。 an

an1

为等比数列。 an2

(2)当特征方程有两个相异的特征根

1、2时,数列

推荐第2篇:高中数学“数列的基本问题”教学研究

高中数学“数列的基本问题”教学研究

郭洁 北京市东城区教师研修中心

一、对“数列的基本问题”中数学知识的深层次理解

(一)数列内容的知识结构

数列作为一种特殊的函数,是反映自然规律的基本数学模型.研究等差数列和等比数列这两种特殊数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题.

(二) 深入理解数列内容在知识体系中的地位及相互联系 数列是函数学习的继续;

数列作为一种特殊函数,是反映自然规律的基本数学模型; 数列在整个中学数学教学内容中,处于一个知识汇合点的地位 ;

归纳和类比是两种用途最广的合情推理 .也是数列教学和学习中最重要的方 法。

(三)数列教学内容的重点、难点 等差数列与等比数列的通项公式与前项和公式的探求,在实际问题的情境中抽象出等差数列或等比数列模型,数列递推关系的建立及其应用是这部分内容的重点和难点.

二、“ 数列的基本问题 ” 的教与学的策略

(一) 学生在学习数列概念时的障碍及对策

数列概念是学习数列的起始课,在学习中学生会遇到如下障碍: 1.对数列定义中的关键词“按一定次序”的理解有些模糊. 2.对数列与函数的关系认识不清. 3.对数列的表示,特别是通项公式以不只一个觉得不可思议.

4.由数列的前几项写不出数列的通项公式. 教学策略:

1.为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子等。

2.数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。 数列的概念

定义:像这样按照一定次序排列起来的一列数称为数列 .从三个层次来理解“次序” ( 1 )语言描述

把位置编上号码,这些号码是所有的非零自然数按从小到大顺序排列,每一个有序号的位置都有一个确定的值,由所有这样的数值组成一个数列; 数列的一般形式可以写成 a1 , a2 , a3 , „ , an , „ , 这种有序性是对数列本质的刻画

感到困惑.对数列的通项公式可( 2 )映射角度

“次序”用数学语言来表示,就是一种特殊的对应,即映射:

( 3 )函数角度

数列可以看成以正整数集 N * (或它的有限子集 {1 , 2 , „ , n} )为定义域的函数 an= f ( n ) ,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值. 数列——初等函数

对于任意的函数 y = f ( x ) ( x ≥0 ) ,我们可以得到一个数列

3.由数列的通项公式写出数列的前几项是简单的代入法,对程度差的学生,可多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助. 归纳数列的通项

教学的目的:归纳法的运用,数列概念的理解。 教学中,分几个层次: 可以先给一些特殊的数列:

再给和特殊数列有关的数列:

4.由数列的前几项写出数列的一个通项公式是学生学习中的一个难点,要帮助学生分析各项中的结构特征,让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。最后老师可以和学生共同归纳一些规律性的结论:

( 1 )并非所有数列都能写出它的通项公式,如: 0 , -1 , 3 , 7 , 11 „; ( 2 )有些数列的通项公式在形式上不一定是唯一的,如:数列 1 , -1 , 1 , -1 , 1 , -1 ,„的通项可写成

( 3 )当一个数列出现“ + ”、“ - ”相间时,应先把符号分离出来,用

等来控制,然后再寻找数量间关系; ( 4 )有些数列的通项公式可以用分段的形式来表示; ( 5 ) 熟悉常见数列的通项:

例如,全体正偶数按从小到大的顺序构成数列 2 , 4 , 6 , „ , 2 n , „ , 这个数列还可以用列表和图象分别表示为

总之:数列概念的要求比过去高,用图形的变化描述数列,把图形的几何结构量化。

(二)用函数的观点进行等差数列的教学 关于等差数列定义的教学

给出一些等差数列的例子,让学生从项与项关系的角度去观察、归纳、概括得等差数列的定义 .在这一段的教学中,一定要重视归纳的过程,这是学生能理解等差数列的所必须的,不要一笔带过! 研究数列的一个很重要的方法是:从整体上看数列,研究数列中的项与项之间的关系

引入:( 2004 北京卷)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和 .已知数列

是等和数列,且a1=2,公和为 5 ,那么 a18的值为

从定义的数学表达式:

得: 表明从第二项起,等差数列的任意项都可以表示为它的前一项与公差的和 , 因此,等差数列的任意项也就应该可以用首项和公差来表示 .

2.等差数列通项与一次函数 得到结论: 是等差数列

这样,由于公差不为零的等差数列的每一项an是关于项数 n 的一次函数式 于是可以利用一次函数的性质来认识等差数列

例如, 理解为什么.

根据一次函数的图象是一条直线和直线由两个点唯一确定的性质,就容易理解为什么两项可以确定一个等差数列 由斜率的计算方法) 3.等差数列的性质

,它的含义是什么呢?(可以适当拓展到直线

表面看是两项之和相等,从对应的项数之间又是一种什么关系呢? 由此归纳得出:

使用等差数列的性质

注意:必须是两项相加等于两项相加,否则不成立。 如

.

时要

,有等差中项的定义是针对三个数的,即如果 x, A, y组成等差数列,则 A叫做 x,

y的等差中项 .从等差数列的整体看: a1 , a2 , a3 , „ , an , „ ,

从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 .推广:从第二项起,每一项都是到它距离相等的两项的等差中项, 即与数列中的任一项“等距离”的两项之和等于该项的 2 倍 .这个性质体现的是数列的对称性,这种对称性是由项数之间的关系决定的 .例题:

(三)把握等差数列的前 n项和公式的教学实质 1 .等差数列的前 n项和公式的教学实质

有些教师在教学中利用“梯形钢管堆的计数”“梯形面积公式”等模型来体现数形结合,认为“倒序求和”是等差数列前 项和公式这一内容蕴含的思想方法。因此,把基础定位在要让学生掌握求和公式及其变式,学会“倒序求和”的思想方法。

其实,“倒序求和”只是为避免对项数 n进行奇偶讨论而引入的一个技巧,并不是什么思想方法。 基础性表现在几个层次: 用等差数列的“基本量”

用等差数列的性质“等差数列”,将不同数求和化归为相同数求和,从数量关系上看是利用了“平均数”概念; 更进一步地,为了体现从概念出发思考和解决问题的思想,利用等差数列的概念和通项公式求

教学设计:

引入高斯故事,归纳方法本质 。

,所以实质就是从“高斯的故事”引入;归纳“高斯方法”的本质,即实质是利用,将不同数化为相同数求和;

探究求值方法,引出分类讨论 用这一方法求

的值,引出需要分 n为奇数、偶数讨论的问题,并

求出和;过渡到利用归纳思想方法,提升解题技巧

求等差数列前 n项和公式。

聚焦基本概念和基本原理,引导学生经历从特殊到一般的归纳过程,从中领悟“化归”的思想方法的思路。

教学中不必急于引入“倒序求和”的技巧。可以在讨论 n的奇偶性而得出求和公式后,再让学生思考“能否想个办法避免讨论”,把公式

变形为 ,再联系性质得到。

应把等差数列前 项和这节课看成是等差数列概念、性质的应用课。这一节课的教学,重要的是培养学生从基本概念、基本原理出发思考问题的习惯。具体教学时应明确任务(即用基本量)的基础上,引导学生从基本性质、通项公式入手,寻找化归的方法,在不断“求简”中得到“倒序求和”。 2.公式的推导

3 .从函数的观点来认识 Sn

首项为 a

1、公差为 d 的等差数列前 n 项和的公式可以写为:

即当 时, Sn是 n 的二次函数式,于是可以运用二次函数的观点和方法来认识求等差数列前 n 项和的问题 如可以根据二次函数的图象了解 Sn的增减变化、极值等情况

4 .通过 Sn的有关问题进一步认识等差数列的结构特征

本题给出了等差数列前 6 项的和,应该关注最后六项的和,利用等差数列的性质和前 n项和公式解决问题。要求学生对等差数列前 n项和概念要有深刻理解。 例 2 等差数列 的公差为 d,前 n项和为 Sn,当首项 a1和 d变化时,

a2+a8+a11是一个定值,则下列各数中也为定值的是( C )

本题利用整体代换求解,体现了整体代换的思想。

(四)典型例题的作用及教学

所以,满足不等式组的正整数 n的取值只能是 8, 9.

(五)数列研究的几个基本问题 1 .关注 an与 Sn

(六)数学归纳法的教学定位 1 .数学归纳法教学的重点和难点 重 点

( 1 )初步理解数学归纳法的原理 .( 2 )明确用数学归纳法证明命题的两个步骤 .( 3 )初步会用数学归纳法证明简单的与正整数有关的恒等式 .难 点

( 1 )对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性 .( 2 )假设的利用,即如何利用假设证明当 n=k+1 时结论正确 .2 .数学归纳法原理形成的教学定位

由于数学归纳法原理的高度的抽象性,学生在学习时,往往限于掌握了一些应用数学归纳法的技巧,而不能真正理解它的意义 .因此学习停留在单纯的模仿之中 .所以原理的形成过程的教学,既是本节课的重点,也是难点 .教师要组织形象、生动、与所学内容密切相关的素材,作为数学归纳法原理产生的背景,以激发学生浓厚的学习兴趣,帮助、引导学生从中感悟其蕴含的数学思想,最终产生迁移效果 .抽象出数学归纳法的原理,如何通过探究顺利实现迁移抽象的目标,就成了本节课能否成功的关键 .有些教师对数学归纳法原理形成过程的教学不够重视,表现在有的教师没有安排实验探究,急于向学生展示一种思维“模式”和“套路”,接着通过大量的例题、习题进行强化;有的教师虽然安排了实验,但也是一带而过,很快抽象出了数学归纳法原理,这只能是教师的“成果”,而不是学生的成果,仍然摆脱不了生硬灌输这种教学模式的影子;甚至有的教师将相当多的时间和精力花在举例说明“不完全归纳法”的缺陷上,这显然偏离了本节课的主题与核心 .“多米诺骨牌实验”的教学定位

本节课所需的“引例”,形式丰富多样,教师用的最多的是“多米诺骨牌实验”,因为这几乎是所有学生小时候都玩过的一种游戏,贴近学生的生活实际,具有一种无形的亲近感。同时“多米诺骨牌实验”以简便的形式蕴含了数学归纳法的深刻原理,因而成为这节课的典型素材 .问题是如何正确认识,科学定位“多米诺骨牌实验”?在实验的方式上,“多米诺骨牌实验”应从不同角度多次进行,每次实验都要有不同的目的,都要引发学生不同的思考、探究,让学生既要有实验成功的体验,又要有实验失败的反思;而多次的实验又能形成一个有机的整体,当将每次实验的体验和反思糅合在一起后,数学归纳法的内在原理就扎根于学生的心中了。从学生的基础来看,学生用原有的知识结构同化数学归纳法存在着数学知识和逻辑知识上的准备不足,需要具体的实例帮助;从学生的认知规律来看认知抽象的事物应尽可能将其具体化、形象化,同时,对抽象事物本质的认识不能一步到位,应该由浅入深、由表及里、正反对比,方能凸显本质。

“多米诺骨牌实验”的功能应该包含两个层次:一是将实验转化为关于正整数的命题,即“第一块骨牌倒下”对应“当 n取第一个正整数 n0时命题成立” ,“第二块骨牌倒下”对应“当 n取第一个正整数 n0+1时命题成立”,„,“所有的骨牌都倒下(即游戏成功)”对应“命题对从 n0开始的所有正整数都成立”,若“第“若

块骨牌倒下,则一定有第 k+1块骨牌跟着倒下”对应时命题成立,则 n=K+1时命题也一定成立”。

二是将游戏转化为具体的数学问题,引导学生通过解决具体的数学问题进一步体验数学归纳法的思想,并从中感受到成功的喜悦,然后在此基础上才能推广到一般命题,抽象概括,得到数学归纳法原理。这样学生才能够切实掌握数学归纳法原理,本节课的难点才能够得到有效突破。 “多米诺骨牌实验”的教学设计 三次实验

实验 1 :用手推倒 1 号骨牌,然后 2 号骨牌, 3 号骨牌,„,紧跟着全部倒下,让学生讨论为什么会出现这种结果,在这个环节,学生对现象的本质的认识可能是比较模糊的,但必要的讨论为下面显现本质奠定了基础。

实验 2 :课件展示动画,在该实验中,骨牌的间距和实验 1 相同,用手推倒 1 号骨牌,没有推倒,然后 2 号骨牌, 3 号骨牌,„,自然就没有倒下,即游戏失败。这时教师让学生对比实验 1 和实验 2 ,讨论游戏失败的原因,从而得到游戏成功的第一个必要条件, 1 号骨牌必须被推倒。

实验 3 :课件展示动画,在该实验中,骨牌的间距出现分化, 1 号骨牌与 2 号骨牌的间距拉开的足够大,其他骨牌间距不变(同实验 1 ),这是用手推倒了 1 号骨牌,但 2 号骨牌没有倒下, 3 号骨牌, 4 号骨牌„,自然就没有倒下,即游戏失败。同样让学生对比不同实验及其结果,分析原因。这是学生得到的结论往往在具体骨牌上,即 1 号骨牌倒下,没有带动 2 号骨牌倒下导致了失败,而学生对其中的任意性很难提炼出来。继续下去,再将 2 号骨牌和 3 号骨牌 ,3 号骨牌和 4 号骨牌„,的间距拉开的足够大,(每一次试验只改变一个间距),重复实验 3 ,如此反复几次,学生不难悟出游戏成功的第二个必要条件,即第 k块骨牌倒下,则一定有第 k+1块骨牌倒下(这里暗示了无穷推理的合理性)。 至此,用数学归纳法证明数学问题时,为何两步缺一不可,便不言自明。 两次迁移:

骨牌游戏虽然有数学归纳法的影子,但毕竟不是数学归纳法原理本身,不能直接用来证明数学问题,这就需要将游戏迁移到数学问题中去。 迁移 1 将骨牌游戏换成数学问题,提出问题:设等差数列

的首项为 a1,公差为 d,我们在前面推导其通项公式时,得到与正整数有关的无穷多等式:

要使这无穷多个等式都成立,你能否用数学语言概括上面游戏成功的两个条件?然后让学生独立思考、合作讨论、得到 ( 1 )第一个等式成立(即当 n=1成立) ( 2 )假设第

个等式成立,一定能推出第k+1个等式也成立。这样就实现了由游戏向原理的第一次迁移。

迁移 2 教师请同学就等差数列通项公式问题具体尝试,是否能做到这两步?最后将无穷多个等式统一为

。至此,由游戏向原理的第二次迁移顺利完成。数学归纳法原理的得出已经是水到渠成。 ( 1 )归纳奠基 ( 2 )归纳递推

从多米诺骨牌实验到数学归纳法原理,清晰地反映了生活问题 — 数学问题 — 数学形式化的发展轨迹。在对实验的探究过程中,学生经历了成功与失败的种种体验,经历了将生活语言转化为数学语言的过程,经历了将生活中蕴含的原理转化为数学原理的过程。由于始终坚持在学生的“最近发展区”内设置问题情境,注重层层递进,避免一步到位,因而学生能够积极思考。乐于交流讨论,不断体验到成功的快乐,从而顺利地建立了新旧知识及其本质之间的联系。

学生通过数列一章内容和其它相关内容的学习,已经初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。

三、学生学习目标的检测

(一)课程标准与高考对数列内容的要求

数列作为一种特殊的函数,是反映自然规律的基本数学模型.学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题.

( 1 )数列的概念和简单表示法

通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数. ( 2 )等差数列、等比数列

①通过实例,理解等差数列、等比数列的概念.

②探索并掌握等差数列、等比数列的通项公式与前 n 项和的公式.

③能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题 .④体会等差数列、等比数列与一次函数、指数函数的关系. 因此教师在检测中要注意

1 .等差数列和等比数列有着广泛的应用,教学中应重视通过具体实例(如教育贷款、购房贷款、放射性物质的衰变、人口增长等),使学生理解这两种数列模型的作用,培养学生从实际问题中抽象出数列模型的能力.

2 .在数列的教学中,应保证基本技能的训练,引导学生通过必要的练习,掌握数列中各量之间的基本关系.但训练要控制难度和复杂程度.

(二)典型题目分析

本题涉及到等差数列与等比数列的基本知识,涉及到求公比的问题,应该注意对公比q的讨论,这一点学生往往容易忽略。

本题的第一问涉及到判断数列是否是等比数列的问题,通过解决本题,教师应该让学生掌握证明等比数列的方法,第二问是数列求和问题,教师应该让学生掌握根据已知条件选择恰当的求和方法。

此题为 1996 年全国高考文史类数学试题第( 21 )题,试卷中不少考生的解法同错误解法,根据评分标准而痛失 2 分,因此在检测中要加强这方面的训练。

推荐第3篇:高中数学三角函数及数列练习题

一、选择题(每题5分,共35分) 1.若sin θcos θ>0,则θ在(

).

A.第

一、二象限

C.第

一、四象限

B.第

一、三象限 D.第

二、四象限

2、已知函数f(x)(1cos2x)sin2x,xR,则f(x)是( ) A、奇函数 B、非奇非偶函数 C、偶函数 D、不能确定

3.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于(

) A.13

B.35

C.49

D. 63

4.函数f(x)(13tanx)cosx的最小正周期为( ) A.2 B.

3 C. D. 225.已知an为等差数列,且a7-2a4=-1, a3=0,则公差d=( ) A.-2 B.-

11 C.D.2 226.函数f(x)cos2x2sinx的最小值和最大值分别为( ) A.-3,1

B.-2,2

C.-3,

32 D.-2,7.把函数y=sin x(x∈R)的图象上所有点向左平行移动象上所有点的横坐标缩短到原来的 A.y=sin2x - ,x∈R

C.y=sin2x + ,x∈R π3π3π个单位,再把所得图332

1倍(纵坐标不变),得到函数图象是(

). 2

262πD.y=sin2x + ,x∈R

3xπB.y=sin + ,x∈R

二、填空题(每题5分,共10分)

8.在等差数列{an}中,a37,a5a26,则a6____________ 9.已知函数f(x)sin(x)(0)的图象如图所示, 则 =

三、计算题(共55分) 10.求函数f(x)=lgsin x+

11.已知函数f(x)sinxsin(x),xR.(10分)

2(5分) 2cosx1的定义域.(I)求f(x)的最小正周期; (II)求f(x)的的最大值和最小值;

12.求函数y=sin2x - 的图象的对称中心和对称轴方程.(5分)

13.已知等差数列{an}中,a2=8,前10项和S10=185.,求通项;(10分)

14.在等差数列{an}中,a1=-60,a17=-12.(10分)

(1)求通项an;(2)求此数列前30项的绝对值的和.

15.设数列an满足a12,an1an322n1(15分)

(1)求数列an的通项公式;(2)令bnnan,求数列的前n项和Sn

π6

推荐第4篇:普通高中数学关于数列试题

等差数列、等比数列同步练习题

等差数列

黎岗

一、选择题

1、等差数列-6,-1,4,9,„„中的第20项为( ) A、89 B、-101 C、101 D、-89 2. 等差数列{an}中,a15=33, a45=153,则217是这个数列的 ( ) A、第60项 B、第61项 C、第62项 D、不在这个数列中

3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为 A、4 B、5 C、6 D、不存在

4、等差数列{an}中,a1+a7=42, a10-a3=21, 则前10项的S10等于( ) A、720 B、257 C、255 D、不确定

5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于 ( )

A、B、C、或 1 D、

6、已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,„„组成一新数 列{Cn},其通项公式为 ( )

A、Cn=4n-3 B、Cn=8n-1 C、Cn=4n-5 D、Cn=8n-9

7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30 若此数列的最后一项比第-10项为10,则这个数列共有( ) A、6项 B、8项 C、10项 D、12项

8、设数列{an}和{bn}都是等差数列,其中a1=25, b1=75,且a100+b100=100, 则数列{an+bn}的前100项和为() A、0 B、100 C、10000 D、505000

二、填空题

9、在等差数列{an}中,an=m,an+m=0,则am= ______。

10、在等差数列{an}中,a4+a7+a10+a13=20,则S16= ______ 。

11. 在等差数列{an}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到 a30的和是 ______ 。

12. 已知等差数列 110, 116, 122,„„,则大于450而不大于602的各 项之和为 ______ 。

三、解答题

13. 已知等差数列{an}的公差d=,前100项的和S100=145 求: a1+a3+a5+„„+a99的值

14. 已知等差数列{an}的首项为a,记(1)求证:{bn}是等差数列

(2)已知{an}的前13项的和与{bn}的前13的和之比为 3 :2,求{bn}的 公差。

15. 在等差数列{an}中,a1=25, S17=S9

(1)求{an}的通项公式

(2)这个数列的前多少项的和最大?并求出这个最大值。

16、等差数列{an}的前n项的和为Sn,且已知Sn的最大值为S99,且|a99|〈|a100| 求使Sn〉0的n的最大值。

[高二数学答案]

1. A

2、B

3、B

4、C

5、B

6、D 7、A

8、C

二、填空题

9、n

10、80

11、-368

12、13702

13、∵{an}为等差数列 ∴ an+1-an=d ∴ a1+a3+a5+„+a99=a2+a4+a6+„+a100-50d 又 (a1+a3+a5+„+a99)+(a2+a4+a6+„+a100)=S100=145 ∴ a1+a3+a5+„+a99==60

14、

(1)证:设{an}的公差为d 则an=a+(n-1)d

当n≥0时 b n-bn-1=d 为常数 ∴ {bn}为等差数列

(2) 记{an},{bn}的前n项和分别为A13, B13则

, ,

∴{bn}的公差为

15、

S17=S9

即 a10+a11+„+a17=

∴ an=27-2n

=169-(n-13)2

当n=13时, Sn最大, Sn的最大值为169

16、

S198=(a1+a198)=99(a99+a100)0 又 a99>0 ,a1000 ∴ 使 Sn>0 的最大的n为197

、数列问题解题方法技巧

1.判断和证明数列是等差(等比)数列常有三种方法: (1)定义法:对于n≥2的任意自然数,验证 为同一常数。 (2)通项公式法:

①若

= +(n-1)d= +(n-k)d ,则 为等差数列; ②若

,则 为等比数列。

(3)中项公式法:验证中项公式成立。

2.在等差数列 中,有关 的最值问题——常用邻项变号法求解:

(1)当 >0,d0时,满足 的项数m使得取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

三、数列问题解题注意事项

1.证明数列 是等差或等比数列常用定义,即通过证明

或 而得。 2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。 3.注意 与 之间关系的转化。如:

=

= .

4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.

5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.

本文出自:www.daodoc.com 原文链接:http://www.daodoc.com/

等比数列

一、选择题

1、若等比数列的前3项依次为

,„„,则第四项为 ( )

A、1 B、C、D、

2、公比为的等比数列一定是 ( )

A、递增数列 B、摆动数列 C、递减数列 D、都不对

3、在等比数列{an}中,若a4·a7=-512,a2+a9=254,且公比为整数,则a12= ( ) A、-1024 B、-2048 C、1024 D、2048

4、已知等比数列的公比为2,前4项的和为1,则前8项的和等于 ( ) A、15 B、17 C、19 D、21

5、设A、G分别是正数a、b的等差中项和等比中项,则有 ( ) A、ab≥AG B、ab

6、{an}为等比数列,下列结论中不正确的是(

A、{an2}为等比数列 B、为等比数列

C、{lgan}为等差数列 D、{anan+1}为等比数列

7、一个等比数列前几项和Sn=abn+c,a≠0,b≠0且b≠1,a、b、c为常数,那么a、

b、c必须满足 ( )

A、a+b=0 B、c+b=0 C、c+a=0 D、a+b+c=0

8、若a、b、c成等比数列,a,x,b和b,y,c都成等差数列,且xy≠0,则 的值为 ( ) A、1 B、2 C、3 D、4

一、填空题

1、在等比数列{an}中,若S4=240,a2+a4=180,则a7= ______,q= ______。

2、数列{an}满足a1=3,an+1=-,则an = ______,Sn= ______。

3、等比数列a,-6,m,-54,„„的通项an = ___________。

4、{an}为等差数列,a1=1,公差d=z,从数列{an}中,依次选出第1,

3,32„„3n-1项,组成数列{bn},则数列{bn}的通项公式是 __________,它的前几项之和是__________。

二、计算题

1、有四个数,前三个数成等差数列,后三个成等比数列,并且第一个

数与第四个数的和为37,第二个数与第三个数的和为36,求这四个数。

2、等比数列{an}的公比q>1,其第17项的平方等于第24项,求:使a1

+a2+a3+„„+an>

成立的自然数n的取值范围。

3、已知等比数列{an},公比q>0,求证:SnSn+2

4、数列{an}的前几项和记为An,数列{bn}的前几项和为Bn,已知

,求Bn及数列{|bn|}的前几项和Sn。

高二数学答案

一、

1、A

2、D

3、B

4、B

5、D

6、C

7、C

8、B

一、

1、6;3

2、

3、-2·3n-1或an=2(-3)n-1

4、2·3n-1-1;3n-n-1

二、

1、解:由题意,设立四个数为a-d,a,a+d,

则由(2) d=36-2a (3)

把(3)代入(1)得 4a2-73a+36×36=0 (4a-81)(a-16)=0 ∴所求四数为

或12,16,20,25。

2、解:设{an}的前几项和Sn,an=a1qn-1

的前几项的和为Tn

∵Sn>Tn

∴即>0 又∴a12qn-1>1 (1) 又a172=a24即a12q32>a1q23 ∴a1=q-9 (2)

由(1)(2) ∴n≥0且n∈N

3、证一:(1)q=1 Sn=na1

SnSn+2-Sn+12=(na1)[(n+2)a1]-[(n+1)a1]2=-a12

(2)q≠1

=-a12qn

SnSn+2-Sn+12=Sn(a1+qSn+1)-Sn+1(a1+qSn) =a1(Sn-Sn+1) = -a1a n+1= -a12qn

24、解:n=1

n≥2时,

∴bn=log2an=7-2n

∴{bn}为首项为5,公比为(-2)的等比数列

令bn>0,n≤3 ∴当n≥4时,bn〈0 1≤n≤3时,bn〉0 ∴当n≤3时,Sn=Bn=n(6-n),B3=9 当n≥4时,Sn=b1+b2+b3-(b4+b5+„+bn)=2B3-Bn=18-n(6-n)=n2-6n+18

推荐第5篇:新课程高中数学数列题型总结

高中数学数列复习题型总结

1.等差等比数列 (n1)S

12.Sn与an的关系:an ,已知Sn求an,应分n1时a1n

2SnSn1(n1)

时,an=两步,最后考虑a1是否满足后面的an.基础题型

题型一:求值类的计算题(多关于等差等比数列) A)根据基本量求解(方程的思想)

1、已知Sn为等差数列an的前n项和,a49,a96,Sn63,求n;

2、等差数列an中,a410且a3,a6,a10成比数列,求数列an前20项的和S20.

3、设an是公比为正数的等比数列,若a11,a516,求数列an前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.

B)根据数列的性质求解(整体思想)

1、已知Sn为等差数列an的前n项和,a6100,则S11

2、设Sn、Tn分别是等差数列an、an的前n项和,

Sn7n2a

,则5.

Tnn3b

5a55S9

,则()

3、设Sn是等差数列an的前n项和,若

a39S

5Sa2n

4、等差数列{an},{bn}的前n项和分别为Sn,Tn,若n,则n=()

Tn3n1bn

5、已知Sn为等差数列an的前n项和,Snm,Smn(nm),则Smn题型二:求数列通项公式: A) 给出前几项,求通项公式

1,0,1,0,……

1,3,6,10,15,21,,

B)给出前n项和求通项公式

1、⑴Sn2n23n;⑵Sn3n1.2n-

12、设数列an满足a13a23a3…+3an

3,-33,333,-3333,33333……

n

(nN*),求数列an的通项公式

3C)给出递推公式求通项公式

a、⑴已知关系式an1anf(n),可利用迭加法或迭代法;

例:1.已知数列{an}满足a1

11,an1an2,求数列{an}的通项公式。 24n

12.已知数列{an}满足an1an2n1,a11,求数列{an}的通项公式。

3.已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。4.设数列{an}满足a12,an1an322n1,求数列{an}的通项公式

b、已知关系式an1anf(n),可利用迭乘法.例:1.已知数列{an}满足an12(n1)5nan,a13,求数列{an}的通项公式。

2n

an,求an。 ,an1

3n13n

1an (n1),求an。 3.已知a13,an1

3n

2c、构造新数列待定系数法适用于an1qanf(n)

2.已知数列an满足a1

解题基本步骤:

1、确定f(n)

2、设等比数列an1f(n),公比为

3、列出关系式

an11f(n1)2[an2f(n)]

4、比较系数求1,

25、解得数列an1f(n)的通项公式

6、解得数列an的通项公式

例:1.已知数列{an}中,a11,an2an11(n2),求数列an的通项公式。

2.(2006,重庆,文,14)在数列an中,若a11,an12an3(n1),则该数列的通项

an______________

3.(2006.福建.理22.本小题满分14分)已知数列an满足a11,an12an1(nN*).求数列an的通项公式;

4.已知数列{an}满足an12an35n,a16,求数列an的通项公式。解:设an1x5n12(anx5n)

5.已知数列{an}满足an13an52n4,a11,求数列{an}的通项公式。解:设an1x2n1y3(anx2ny)

511n

1,an1an(),求an 6

327.已知数列{an}满足an12an3n24n5,a11,求数列{an}的通项公式。

6.已知数列an中,a1

解:设an1x(n1)2y(n1)z2(anxn2ynz)

8.已知数列{an}满足an12an43n1,a11,求数列an的通项公式。d、给出关于Sn和an的关系 解法:把Sn换为an

1、设数列an的前n项和为Sn,已知a1a,an1Sn3n(nN),设bnSn3n, 求数列bn的通项公式.

2、设Sn是数列an的前n项和,a11,SnanSn

⑴求an的通项; ⑵设bn

1

(n2).2

Sn

,求数列bn的前n项和Tn.2n

1(6)根据条件找n1与n项关系

151

例1.已知数列{an}中,a11,an1C,若C,bn,求数列{bn}的通项公式

an2an

21n1

a11,an1(1)ann

{a}n2 2.(2009全国卷Ⅰ理)在数列n中,

abnn

n,求数列{bn}的通项公式 (I)设

(7)倒数变换法适用于分式关系的递推公式,分子只有一项 例:1.已知数列{an}满足an1

2an

,a11,求数列{an}的通项公式。 an2

(8)对无穷递推数列

消项得到第n1与n项的关系

例:1.(2004年全国I第15题,原题是填空题)已知数列{an}满足

a11,ana12a23a3(n1)an1(n2),求{an}的通项公式。

题型三:证明数列是等差或等比数列 A)证明数列等差

1、已知Sn为等差数列an的前n项和,bn

Sn

(nN).求证:数列bn是等差数列.n

2、已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=数列;

B)证明数列等比

1

1.求证:{}是等差

Sn

21

1、设{an}是等差数列,bn=,求证:数列{bn}是等比数列;

2

n

2、设Sn为数列an的前n项和,已知ban2b1Sn

n

1⑴证明:当b2时,ann2是等比数列;⑵求an的通项公式

an



3、已知数列an满足a11,a23,an23an12an(nN*).⑴证明:数列an1an是等比数列;⑵求数列an的通项公式;

⑶若数列bn满足4b114b21...4bn1(an1)bn(nN*),证明bn是等差数列.题型四:求数列的前n项和 基本方法: A)公式法,

na1(q1)

n(a1an)n(n1)Snna1dSna1(1qn) 公比含字母时一定要讨论

(q1)221q

例:1.已知等差数列{an}满足a11,a23,求前n项和{Sn}

2.等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n=() A.9B.10C.11D.1

23.已知等比数列{an}满足a11,a23,求前n项和{Sn} B)拆解求和法.例

1、求数列{2n2n3}的前n项和Sn.

23,,(n例

2、求数列1,

1214181),的前n项和Sn.2n

3、求和:2×5+3×6+4×7+…+n(n+3) C)裂项相消法,数列的常见拆项有:

1111

1();n1n;

n(nk)knnkn1

111例

1、求和:S=1+ 12123123n111

1例

2、求和:.213243n1nx

2例、设f(x),求:

1x2⑴f()f()f()f(2)f(3)f(4);

⑵f()f()f()f(2010).)f()f(2)f(2009

D)倒序相加法,

E)错位相减法,

例、若数列an的通项an(2n1)3n,求此数列的前n项和Sn 例:1.求和Sn12x3x2nxn

12.求和:Sn

123n23n aaaa

3.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1b11,a3b521,

an

(Ⅱ)求数列的前n项和Sn. a5b313 (Ⅰ)求{an},{bn}的通项公式;

bn

F)对于数列等差和等比混合数列分组求和

例、已知数列{an}的前n项和Sn=12n-n,求数列{|an|}的前n项和Tn.题型五:数列单调性最值问题

1、数列an中,an2n49,当数列an的前n项和Sn取得最小值时,n例

3、数列an中,an3n228n1,求an取最小值时n的值.例

4、数列an中,ann

2、已知Sn为等差数列an的前n项和,a125,a416.当n为何值时,Sn取得最大值;

n22,求数列an的最大项和最小项.*

5、设数列an的前n项和为Sn.已知a1a,an1Sn3n,nN*.

(Ⅰ)设bnSn3n,求数列bn的通项公式;(Ⅱ)若an1≥an,nN,求a的取值范围. 例

6、已知Sn为数列an的前n项和,a13,SnSn12an(n2).⑴求数列an的通项公式;

⑵数列an中是否存在正整数k,使得不等式akak1对任意不小于k的正整数都成立?若存在,求最小的正整数k,若不存在,说明理由.例

7、非等比数列{an}中,前n项和Sn(an1)2, (1)求数列{an}的通项公式; (2)设bn

有Tn

(nN*),Tnb1b2bn,是否存在最大的整数m,使得对任意的n均

n(3an)

m

总成立?若存在,求出m;若不存在,请说明理由。 32

综合练习:

1.设数列{an}满足a10且(1)求{an}的通项公式 (2)设bn

2.等比数列{an}的各项均为正数,且2a13a21,a39a2a6 (1)求数列{an}的通项公式

a1a2

(2)设bnlog3log3...log3n,求数列{

a

11

1

1an11an

n

1an1

n

,记Snbk,证明:Sn1

k1

的前n项和 bn

3.已知等差数列{an}满足a20, a6a810.(1)求数列{an}的通项公式及Sn(2)求数列{

an

的前n项和 n12

4.已知两个等比数列{an},{bn},满足a1a(a0),b1a11,b2a22,b3a33 (1)若a1,求数列{an}的通项公式 (2)若数列{an}唯一,求a的值

5.设数列{an}满足a12,an1an322n1 (1)求数列{an}的通项公式

(2)令bnnan,求数列{bn}的前n项和Sn

6.已知a1=2,点(an,an+1)在函数f(x)=x+2x的图象上,其中=1,2,3,… (1) 证明数列{lg(1+an)}是等比数列;

(2) 设Tn=(1+a1) (1+a2) …(1+an),求Tn及数列{an}的通项; (3) 记bn=

112

,求{bn}数列的前项和Sn,并证明Sn+=1.

anan23Tn1

7.已知等差数列{an}满足:a37,a5a726,{an}的前n项和Sn (1)求an及Sn (2)令bn

8.已知数列an中,a13,前n和Sn

1an1

(nN),求数列{bn}前n项和Tn

(n1)(an1)1 2

①求证:数列an是等差数列②求数列an的通项公式

③设数列

1

的前n项和为Tn,是否存在实数M,使得TnM对一切正整数n都成立?

anan1

若存在,求M的最小值,若不存在,试说明理由。

9.数列an满足a1=8,a42,且an22an1an0 (nN),

(Ⅰ)求数列an的通项公式; (Ⅱ)设bn

(nN*),Snb1b2bn,是否存在最大的整数m,使得任意的

n(12an)

n均有Sn

6

m

总成立?若存在,求出m;若不存在,请说明理由. 32

推荐第6篇:上海高中数学数列的极限

7.6

数列的极限

课标解读:

1、理解数列极限的意义;

2、掌握数列极限的四则运算法则。

目标分解:

1、数列极限的定义:一般地,如果当项数n无限增大时,无穷数列限地趋近于某个常数注:

an的项an无a(即|anna|无限地接近于0),那么就说数列an以a为极限。

a不一定是a中的项。

1lim0limCCnn

2、几个常用的极限:①n(C为常数);②;③limqn0(|q|1)n;

3、数列极限的四则运算法则:设数列an、bn, 当limanan,limbnbn时,nlimlim(anbn)ab;

lim(anbn)abnana(b0)nbbn;

4、两个重要极限:

①c001limc1c0nn不存在c0

|r|10nlimr1r1 ②n不存在|r|1或r1 问题解析:

一、求极限:

例1:求下列极限:

2(1) lim4nn1lim3n3nn2n23

(2)

n2n4n

2 (3)

nlim(n2nn)

例2:求下列极限: (1) nlim(1n24n273n2n2n2);

(2) lim1n[2515818111(3n1)(3n2)]

例3:求下式的极限:

limcosnsinnncosnsinn,(0,2)

二、极限中的分数讨论:

例4:已知数列an是由正数构成的数列,a13,lganlgan1lgc,其中n是大于1的整数,c是正数。

(1) 求数列an的通项公式及前n项和Sn;

且满足2n1an(2) 求lim的值。 n2nan1

三、极限的应用:

1(1)p1n例5:已知p、q是两个不相等的正整数,且q2,求lim的值。

n1q(1)1n

知识内化:

1、limn2__________________。

n12n113n2lim[]______________。

2、nn(n1)n(n1)n(n1)2n1n3n___________________。

3、limn1n1n2n3

4、下列四个命题中正确的是(

2A、若limanA,则limanA

nn2B、若an0,limanA,则A0

n2C、若limanA,则limanA

n2nnnD、若lim(ab)0,则limanlimbn

nnnq,q1,

5、已知数列an、公比分别为p、其中pq且p1,bn都是由正数组成的等比数列,设cnanbn,Sn为数列cn的前n项和,求lim

能力迁移:

Sn。

nSn1

1、数列an、bn都是无穷等差数列,其中a13,b12,b2是a2与a3的等差中项,且liman1111)的值。,求极限lim(nnba1b1a2b2anbn2n

基本练习:

一、填空题:

n22n___________________。

1.limnb2n23 2.若lim(2x1)的极限存在,则实数x的取值范围__________________。

nnn21anb)1,则a=______________,b=____________________。

3.lim(nn1 4.数列an中,a13,且对任意大于1的正整数n,点(an,则liman1)在直线xy30上,an__________________。

n(n1)2f(n2) 5.已知f(n)12n,则lim__________________。

n[f(n)]2ann2 6.数列an的公差d是2,前n项的和为Sn,则lim_________________。

nSn 7.设数列an、bn都是公差不为0的等差数列,且lim ______________________。

anbb2b2n等于 2,则lim1nbnna3nnn3n1

8、将lim,则实数x的取值范围是__________________。nn(x2)nn3n13n3

9、已知数列an: 112123129,…,那么数列 ,,,…,2334441010101的所有项的和为________________。 anan1

10、已知等比数列an的首项a1,公比q,且有lim(na11qn),则首项a1的取值范围 1q2 是__________________。

二、选择题

bn2can2c3,则lim

211、已知a、b、c是实常数,且lim2的值是(

ncnbncna A、2 B、3

C、

1

2D、6 1,1n1000

12、a中,annn2,则数列an的极限值(

)n2 n22n,n1001 A、等于0

B、等于1

C、等于0或1

13、1111nlim[n(13)(14)(15)(1n2)]等于(

) A、0 B、1

C、2

D、3

14、已知lim2nann2nan1,aR,则a的取值范围是(

) A、a0 B、a2,a2

C、2a2

a2

三、解答题

15、已知等差数列前三项为a、

4、3a,前n项和为Sn,Sk2550

(1)求a及k的值; (2)求lim11n(S1) 1S2Sn

16、曲线C:xy1(x0)与直线l:yx相交于A1,作A1B1l交x辆于B1,作B1A2//l交曲线C于A2……依此类推。

D、不存在

D、a2且 (1)求点A1,A2,A3和B1,B2,B3的坐标; (2)猜想An的坐标,并加以证明; (3)求lim |BnBn1|

nBBn1n

17、已知数列{an}满足(n1)an1(n1)(an1)且a26,设bnann(nN) (1)求{bn}的通项公式; (2)求lim(n 1111)的值。 b22b32b42bn23(an1)(nN)。数列{bn}的通项公式为bn4n3(nN) 2Tn

18、设Tn为数列{an}前n项的和, (1)求数列{an}的通项公式;

(2)若c{a1,a2,a3,an,}{b1,b2,b3,bn,},则c称为数列{an},{bn}的公共项,将数列{an}与{bn}的公共项按它们在原数列中的先后顺序排成一个新的数列,证明:数列{cn}的通项公式为cn32n1(nN); (3)设数列{cn}中的第n项是数列{bn}中的第m项,Bm为数列{bn}前m项的和;Dn为数列{cn}前n项的和,且AnBmDn;求:lim

An。

n(a)4n

推荐第7篇:数列教案

乐清体校 黄智莉

教学目标:

知识与技能:理解数列的有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的前几项甚至任意一项

过程与方法:通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力,观察能力和抽象概括能力。

情感、态度、价值观:在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

教学重点:数列及其有关概念,通项公式。 教学难点:通项公式的理解。 教学方法:启发引导式 教学手段:多媒体教学

数列

教学过程:

一、创设情景,在生活中认识数列

1.温州某皮鞋公司打算去非洲拓展皮鞋市场,派两个人去调查市场,发现那里的人都不穿鞋子,问去投资还是放弃呢? 适当的数填空

1,2,(),(),()?

1,2,(),(),()? 1,2,(),(),()?

2.台球桌中的数列 1,2,3,4,5 3.我国有十二生肖的习俗, 今年是2008年鼠年,请说出2008年之前最后一个鼠年,2008年之后最后一个鼠年?

1996,2008,2020,2032 4.象棋的传说

国际象棋有八行八列,64个格子。国王要奖励国际象棋的发明者问他有什么要求, 发明者说:在第1个格子里放1颗麦粒,在第2个格子里放2颗麦粒,在第3个格子里放4颗麦粒,在第4个格子里放8颗麦粒,在第5个格子里放16颗麦粒,依次类推。国王答应了。

问国王能满足满足上述要求吗?

1,21,22,23,...263

5.奥运金牌

北京奥运会上,中国拿了多少枚金牌?

我国从1984年倒2008年共开始参加了7届奥运会,金牌数依次为 15,6,16,16,28,32,51 6.小女孩荡秋千,从一边到另一边,唐老鸭从上到下,跳来跳去。

n (1) n=1,n=2,n=3,n=4,..时

-1,1,-1,1,-1,1,…

7.庄子曰:一尺之捶,日取其半,万世不竭。你能用一列数来表达这句话的含义吗?

1111 1 , , , , , … 24816

二、讲授新课

(1)1,2,3,4,5

(2)1,21,22,23,...263

(3)15,5,16,16,28,32,51

(4)1996,2008,2020,2032,...

(5)1,1,1,1,1,1,...

1111 (6)1,,,,,...24816

1.函数的定义:按一定次序排列的一列数叫做数列 2.数列的项:数列中的每个数叫做数列的项

各项分别叫数列的第一项,第二项,。。。第n项 3.数列的记法:

(1) a1,a2,a3,,an,(2) an思考一:是同一数列吗?

(3)15,5,16,16,28,32,51 (a ) 51,32,28,16,16,5,15

(5)-1,1,-1,1,-1,… (b)1,-1,1,-1,1,… 4.数列的分类

按项数的分为:有穷数列。无穷数列

5.探索与研究

(1)在生活中,找找数列的例子

(2)电子表格中的数列

6.数列的通项公式

思考2:

项a1

a3a4a5...an...a22序号1345...n......?...19962008202020321984121198412219841231984124198412nan198412n

通项公式的定义:如果数列{ an }中的第n项an与n之间的关系可以用一个公式来表示,那么这个公式就叫做数列的通项公式。

项与序号的关系,n的范围 三.例题讲解 例

1、

根据下面数列{an}的通项公式,写出它的前5项:

nn(1)an(2)a1nn n1算法:依次用正整数1,2,3,..,去代替公式中n,就可求出数列中的第一项、第二项、第三项……

2.智力大冲浪 用适当的数填空

(1)1,3,(),7 222213151 (2),,(),235

111 (3),,(),122345

四、学生练习 观察下面数列的特点,用适当的数填空,并写出

每个数列的一个通项公式:12,4, ,16,32, ,128,2 ,4,9,16,25, ,49,3-1,41,1111, ,,,, ,24562, ,2,5, ,7,

五、小结

 数列的定义;  数列的通项公式。  本节课的能力要求是:  会由通项公式 求数列的特定项

六、作业

 书P110 第1题 第3题

做完第3题,如没有疑问,请思考第6题

推荐第8篇:数列教案

数列教案

教材分析

1.地位作用

数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列的极限作了铺垫。最后,由于不少关于恒等变形、解方程(组)以及一些带有综合性的数学问题都与等差数列、等比数列有关,学习这一章便于对学生进行综合训练,从而有助于培养学生综合运用知识解决问题的能力。

2.教材编写特点

数列从知识上看较为简单易学,这样可借助于其知识联系面广的特点对初中所学内容起到复习和深化的作用;(如:解方程、一次函数、二次函数、等比性质等)

数列本身是一种特殊函数,让它紧接在第二章“函数”之后,有助于加深对函数概念的理解。

学情分析

数列这一章是学生初次进行全方面的学习,但学生们在之前的生活学习中对数列已经有了一定的认识与了解,所以如果从具体的事例入手,相信学生不会感到太过陌生或困惑,数列与函数也有着密切的联系,而学生对函数已经可以说非常熟练了,所以前期教学主要从这两方面进行,使学生更加容易理解与记忆。另外数列与我们的生活有着密切的联系,尤其是与自然界中的许多植物,从这些可以引发学生的兴趣与激情。

教学目标

1) 专业知识:引入数列这一概念,使学生初步认识数列的项、通项公式、递推公式及等差数列。

2) 情感思想:通过引入自然界的有趣的数字排列,增加学生对奇妙自然界的认识,从而激发学生对数字的兴趣。

教学重点及难点:

1) 重点:数列的项、通项公式、递推公式 2) 难点:通项公式、递推公式

3) 解决方法:首先通过引入生活中的数字排列激发学生对数列的兴趣和敏感,使学生认为数列很简单,就是找数字间的规律,从而很好的掌握通项公式、递推公式。

教学过程

1) 通过鲁滨逊漂流记的一段电影视频引入课题;(ppt) 问:从视频中有何发现与收获? 2) 引入数列的定义(ppt)

3) 从斐波那契数列引入生活中的数列(ppt)

播放相关图片,通过自然界中的花卉、动植物来了解斐波那契数列 4) 具体事例(ppt)

问:发现何种规律或结论? 答:„„„„„„„„ 总结:

5) 通过快寄编号引入数列项的概念(ppt) 6) 递推公式和通项公式(ppt) 7) 数列的简单分类(ppt)

板书设计

1) 数列定义 2) 数列的项的概念

3) 递推公式与通项公式的形式及推理过程

推荐第9篇:高中数学《数列的极限》教学设计

高中数学《数列的极限》教学设计

一、教学目标

1.知识与能力目标

①使学生理解数列极限的概念和描述性定义。

②使学生会判断一些简单数列的极限,了解数列极限的“e-N\"定义,能利用逐步分析的方法证明一些数列的极限。

③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。

2.过程与方法目标

培养学生的极限的思想方法和独立学习的能力。

3.情感、态度、价值观目标

使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。

二、教学重点和难点

教学重点:数列极限的概念和定义。

教学难点:数列极限的“ε―N”定义的理解。

三、教学对象分析

这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε-N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。

四、教学策略及教法设计

本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。

五、教学过程

1.创设情境

课件展示创设情境动画。

今天我们将要学习一个很重要的新的知识。

情境

1、我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。

情境

2、我国古代哲学家庄周所著的《庄子?天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之„„?如此下去,无限次地切,每次都切一半,问是否会切完?

大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。

2.定义探究

展示定义探索(一)动画演示。

问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?

(1)1/2,2/3,3/4,„n/n-1 (2)0.9,0.99,0.999,0.9999,1-1/10n„„

问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?

师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。

那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。

那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。

提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?

展示定义探索(二)动画演示,师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O-1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0。0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。

数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an-A|n的极限。

定义探索动画(一):

课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。

定义探索动画(二) 课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和I an一1I的值,并且动画演示出第an项和1之间的距离。如图2所示是课件运行时的一个画面。

3.知识应用

这里举了3道例题,与学生一块思考,一起分析作答。

例1.已知数列:

1,-1/2,1/3,-1/4,1/5„„,(-1)n+11/n,„„

(1)计算|an-0| (2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。

(3)确定这个数列的极限。

例2.已知数列:

已知数列:3/2,9/4,15/8„„,2+(-1/2)n,„„。

猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017

例3.求常数数列一7,一7,一7,一7,„„的极限。

5.知识小结

这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。

课后练习:

(1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。

(2)课本练习1,2。

6.探究性问题

设计研究性学习的思考题。

提出问题:

芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O.1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里„„这样一直追下去,阿基里斯能追上乌龟吗?

这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。

推荐第10篇:高中数学数列公式及结论总结

高中数学数列公式及结论总结

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=Sn=Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1(是关于n的正比例式); 当q≠1时,Sn=Sn=

三、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4mS3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、、仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)

11、{an}为等差数列,则(c>0)是等比数列。

12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。

13.在等差数列 中:

(1)若项数为 ,则

(2)若数为 则,,

14.在等比数列 中:

(1)若项数为 ,则

(2)若数为 则,

第11篇:数列求和教案

数列求和

数列求和常见的几种方法: (1) 公式法:①等差(比)数列的前n项和公式;

1n(n1) 21222n2nn(

123......6② 自然数的乘方和公式:123......n(2) 拆项重组:适用于数列

1n)(2 1)an的通项公式anbncn,其中bn、cn为等差数列或者等比数列或者自然数的乘方;

(3) 错位相减:适用于数列an的通项公式anbncn,其中bn为等差数列,cn为等比数列;

(4) 裂项相消:适用于数列a的通项公式:aknnn(n1),a1nn(nk)(其中k为常数)型;

(5) 倒序相加:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的.(6)

分段求和:数列an的通项公式为分段形式

二、例题讲解

1、(拆项重组)求和:311254718......[(2n1)12n]

练习1:求和Sn122334......n(n1)

2、(裂项相消)求数列11113,35,57,179,...,1(2n1)(2n1)的前n项和

练习2:求S11n11212311234...1123...n

1

3、(错位相减)求和:1473n222223...2n

练习3:求Sn12x3x24x3...nxn1(x0)

4、(倒序相加)设f(x)4x4x2,利用课本中推导等差数列前n项和的方法,求:f(11001)f(21001)f(31001)...f(10001001)的值

a3n2(n4)例

5、已知数列n的通项公式为an2n3(n5)(nN*) 求数列an的前n项和Sn

检测题

1.设f(n)22427210...23n10(nN),则f(n)等于(

2n222n4(81)

B.(8n11)

C.(8n31)

D.(81) 777712.数列{an}的前n项和为Sn,若an,则S5等于(

n(n1)511A.1

B.

C.

D.

66303.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S37,且a13, 3a2,a34构成等差数列. A.(1)求数列{an}的通项公式. (2)令banln3n1,n1,2...,,求数列{bn}的前n项和Tn。

4.设数列a2nn满足a13a23a3…3n1a

3,aN*n. (Ⅰ)求数列an的通项;

(Ⅱ)设bnna,求数列bn的前n项和Sn n

5.求数列22,462n22,23,,2n,前n项的和.6:求数列112,123,,1nn1,的前n项和.

7:数列{an}的前n项和Sn2an1,数列{bn}满b13,bn1anbn(nN) .(Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n项和Tn。

8:

求数列21,41,6114816,,2n2n1,...的前n项和Sn.

3

9、已知数列an的前n项和Sn123456...1n1n,求S100.

10:在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.

11:求数列的前n项和:11,1a4,11a27,,an13n2,…

12:求S12223242...(1)n1n2(nN)

13:已知函数fx2x2x2 (1)证明:fxf1x1;

(2)求f1f10210f810f910的值。 .

第12篇:数列求和教案

课题:数列求和

教学目标

(一) 知识与技能目标

数列求和方法.

(二) 过程与能力目标

数列求和方法及其获取思路.

教学重点:数列求和方法及其获取思路. 教学难点:数列求和方法及其获取思路.

教学过程

1.倒序相加法:等差数列前n项和公式的推导方法: (1)Sna1a2an2Snn(a1an)

Snanan1a112223210222 例1.求和:2110222923282101分析:数列的第k项与倒数第k项和为1,故宜采用倒序相加法.

小结: 对某些前后具有对称性的数列,可运用倒序相加法求其前n项和.2.错位相减法:等比数列前n项和公式的推导方法:

(2)Sna1a2a3an(1q)Sna1an1 qSaaaa23nn1n23n例2.求和:x3x5x(2n1)x(x0)

3.分组法求和

1的前n项和; 161例4.设正项等比数列an的首项a1,前n项和为Sn,且210S30(2101)S20S100

2例3求数列1,2,3,4(Ⅰ)求an的通项; (Ⅱ)求nSn的前n项和Tn。 例5.求数列 1, 1a, 1aa,,1aaa121418,的前n项和Sn.

n(n1)解:若a1,则an111n, 于是Sn12n;2 n1a1 若a1,则an1aan1 (1an)1a1a1a1a21an11a(1an)2n于是Sn [n(aaa)][n]

1a1a1a1a1a1a111 1212312n22n14.裂项法求和 例6.求和:12112(),

n(n1)nn11111112n Sna1a2an2[(1)()()]2(1)223nn1n1n1解:设数列的通项为an,则an例7.求数列112,1231,,1nn1,的前n项和.解:设annn11n1n

(裂项)

1nn1则 Sn12312

(裂项求和)

=(21)(32)(n1n)

=n11

三、课堂小结:

1.常用数列求和方法有:

(1) 公式法: 直接运用等差数列、等比数列求和公式; (2) 化归法: 将已知数列的求和问题化为等差数列、等比数列求和问题; (3) 倒序相加法: 对前后项有对称性的数列求和;

(4) 错位相减法: 对等比数列与等差数列组合数列求和; (5) 并项求和法: 将相邻n项合并为一项求和; (6) 分部求和法:将一个数列分成n部分求和;

(7) 裂项相消法:将数列的通项分解成两项之差,从而在求和时产生相消为零的项的求和方法.

四、课外作业: 1.《学案》P62面《单元检测题》 2.思考题

11146前n项的和.481612n2(2).在数列{an}中,an,又bn,求数列{bn}的前n项的和.n1n1n1anan12(1).求数列:(3).在各项均为正数的等比数列中,若a5a69,求log3a1log3a2log3a10的值.解:设Snlog3a1log3a2log3a10

由等比数列的性质 mnpqamanapaq

(找特殊性质项) 和对数的运算性质 logaMlogaNlogaMN

Sn(log3a1log3a10)(log3a2log3a9)(log3a5log3a6)

(合并求和)

=(log3a1a10)(log3a2a9)(log3a5a6)

=log39log39log39

=10

第13篇:简单数列教案

北外附校小学部2010-2011学年度第一学期 二年级数学思维训练试题(认识简单数列教案) 我们把按一定规律排列起来的一列数叫数列.

在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题。

1、找出下面各数列的规律,并填空。(1) 1,2,3,4,5,□,□,8,9,10.(2) 1,3,5,7,9,□,□,15,17,19.(3) 2,4,6,8,10,□,□,16,18,20.(4) 1,4,7,10,□,□,19,22,25.(5) 5,10,15,20,□,□,35,40,45.注意:自然数列、奇数列、偶数列也是等差数列.

2、找出下面的数列的规律并填空。

1,1,2,3,5,8,13,□,□,55,89.解:这叫斐波那契数列(兔子数列),从第三个数起,每个数都是它前面的两个数之和.这是个有重要用途的数列.8+13=21,13+21=34.所以:

空处依次填:

3、找出下面数列的生成规律并填空。1,2,4,8,16,□,□,128,256. 解:它叫等比数列,它的后一个数是前一个数的2倍.16×2=32,32×2=64,所以空处依次填:

4、找出下面数列的规律,并填空。1,2,4,7,11,□,□,29,37.解:这数列规律是:后一个数减前一个数的差是逐渐变大的,这些差是个自然数列:

5、找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.解:这是自然数平方数列,它的每一个数都是自然数的自乘积.如:1=1×1,4=2×2,9=3×3,16=4×4,25=5×5,

,64=8×8,81=9×9,100=10×10.

若写成下面对应起来的形式,就看得更清楚.

自然数列: 1 2 3 4 5 6 7 8 9 10

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

自然数平方数列:1 4 9 16 25 36 49 64 81 100

6、从1开始,每隔两个数写出一个自然数,共写出十个数来.解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:

即1,4,7,10,13,16,19,22,25,28

可以看出,这是一个等差数列,后面一个数比前面一个数大3.

7、从1开始,每隔六个数写出一个自然数,共写出十个数来.解:仿习题1,先写前面的几个数如下:

可以看出,1,8,15,22,„„也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:

1,8,15,22,29,36,43,50,57,64.

8、在习题6和习题7中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?

解:观察习题6和习题7两个数列:习题6的数列是:1,8,15,(22),„„

习题7的数列是:1,4,7,10,13,16,19,(22),25,28,„„ 可见两个数列中最小的相同数是22.

9、一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?

(假定在坐满以前,无乘客下车,见表四(1))

方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了,

1+2+3+4+5+6+7+8+9+10+11+12=78(人)

可见第12站以后,车上坐满乘客.

10、如图所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问

(1)盒子里有多少珠子? (2)这串珠子共有多少个?

解:仔细观察可知,这串珠子的排列规律是:

白 黑 白 黑 白 黑 白 黑 白 黑 白 黑 白 黑 白

1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,

①在盒子里有:

4+1+4=9(个).

②这一串珠子总数是:

1+1+1+2+1+3+1+4+1+5+1+6+1+7+1

=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)

=28+8=36(个).

第14篇:数列极限教案

数列的极限教案

授课人:###

一、教材分析

极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。

二、教学重点和难点

教学重点:数列极限概念的理解及数列极限N语言的刻画。

教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。

三、教学目标

1、通过学习数列以及数列极限的概念,明白极限的思想。

2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。

四、授课过程

1、概念引入

例子一:(割圆术)刘徽的割圆术来计算圆的面积。

.........内接正六边形的面积为A1,内接正十二边形的面积为A2......

内接正62n1形的面积为An.

A1,A2,A3......An......圆的面积S.

用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断

1接近圆的面积。

例子二:庄子曰“一尺之锤,日取其半,万世不竭”。

第一天的长度1

1 第二天的剩余长度

21 第二天的剩余长度

41 第四天的剩余长度 8

.....

1 第n天的剩余长度n1.......2

随着天数的增加,木杆剩余的长度越来越短,越来越接近0。

这里蕴含的就是极限的概念。

总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.

在介绍概念之前看几个具体的数列:

1111(1): 1,,,......; 23nn

1n1111:1,,,,,......; (2)n2345

(3)n2:1,4,9,16,......;

(4)1:1,1,1,1,......,1,......; nn

我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)

(4)中的数列却没有这样的特征。

此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。

可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。

2、内容讲授

(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x

n的极限,

或者说数列xn收敛且收敛于数a。

写作:limxna或xnan。

n

如果数列没有极限,就说数列是发散的。

注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。

(2)N的选取是与任意给定的有关的。 11以数列为例,欲若取,则存在N100,当nNxna; 100n

若取1,则存在N1000,当nN时,xna。 1000

数列极限的N语言:

limx

nna0,N,nNxna.数列极限的几何解释:

3、例题讲解

n211。 例题1用数列极限的定义证明limnnn

n21证明:设xn,因为 nn

n21212xn1nnnnn

0,欲使xn,只要22即n, n

2我们取N1,当nN时, 

n2122.nnNn

n21所以lim1.nnn

2注:N的取法不是唯一的,在此题中,也可取N10等。 

例题2 设xnC(C为常数),证明limxnC。 n

证明:任给的0,对于一切正整数n,

xnCCC0,

所以limxnC。 n

小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业

第15篇:高中数学数列求通项公式习题

补课习题

(四)

的一个通项公式是() ,

A

、anB

、anC

、anD

、an2.已知等差数列an的通项公式为an32n , 则它的公差为()

A、2B、3C、2D、

33.在等比数列{an}中, a116,a48,则a7()

A、4B、4C、2D、

24.若等比数列an的前项和为Sn,且S1010,S2030,则S30

5.已知数列an通项公式ann210n3,则该数列的最小的一个数是

6.在数列{an}中,a1于.

7.已知{an}是等差数列,其中a131,公差d8。

(1)求数列{an}的通项公式;

(2)数列{an}从哪一项开始小于0?

(3)求数列{an}前n项和的最大值,并求出对应n的值. 11nan且an1,则数列nN的前99项和等2n1anan

8.已知数列an的前项和为Snn23n1,

(1)求a

1、a

2、a3的值;

(2)求通项公式an。

9.等差数列an中,前三项分别为x,2x,5x4,前n项和为Sn,且Sk2550。

(1)、求x和k的值;

(2)、求Tn=1111; S1S2S3Sn

(3)、证明: Tn

1考点:

1.观察法求数列通项公式;2.等差数列通项公式;3.等比公式性质;4.等比公式前n项和公式应用;5.数列与函数结合;6.求通项公式;7.基本的等差数列求通项公式及其应用;8.求通项公式;9.等差数列性质应用及求和与简单的应用

答案:

1.B;2.C; 3.A ; 4.70 ; 5.-22; 6.5049.7.(1)an398n(2)n=5(3)sn7

6、n=4;

8.(1)a1

5、a2

6、a38(2)an5;n1) 2n2;n2)

9.(1)由4xx5x4得x2,an2n,.Snn(n1),k(k1)2550得k50

(2).Snn(n1),Sn111 n(n1)nn1

T1111111111n12334n1nnn1n1n1

11且0 (3)Tn1n1n1

Tn1

第16篇:高中数学 第2章 数列、等差数列 复习教案 新人教版必修5

课题:数列、等差数列复习

教学目标

(一) 知识与技能目标 1. 知识的网络结构;

2. 重点内容和重要方法的归纳.

(二) 过程与能力目标

1. 熟练掌握数列、等差数列及等差数列前n项和等知识的网络结构及相互关系.2. 理解本小节的数学思想和数学方法.

(三) 情感与态度目标

培养学生归纳、整理所学知识的能力,从而激发学生的学习兴趣、求知欲望,并培养良好的学习品质.

教学重点

1.本章知识的网络结构,及知识间的相互关系;2.掌握两种基本题型.

教学难点

知识间的相互关系及应用.

教学过程

一、知识框架图

定义 分类 基本概念

数列 通项公式

一般数列 递推公式

图象法 特殊函数——等差数列

定义 通项公式 等差中项 前项和公式 性质

二、基本题型

1.题型一:求数列通项公式的问题.例1.已知数列{an}的首项a1=1,其递推公式为an1并归纳出通项公式.解法一: a1=1,a22an (nN*且n2).求其前五项,an22a122a212a322a41,a3,a4,a5,归纳得a123a222a325a423an2 n1解法二: an12an111111 又a10,an0 an12anan1an2an2故{1111n11 }是以1为首项,为等差的等差数列(n1)2ana122anan22121.令n=1,2,3,4,5得a1=1,a2,a3,a4,a5, n13253例2.数列{an}中,已知a11,anan12n1(nN*且n2).求此数列的通项公式.解: anan12n1(nN*且n2),且a11.

a2a1221,a3a2231,a4a3241, anan12n1.把这n-1个式子两边分别相加可得 ana12[234n](n1).

ann2(n2,且nN*).而a11也适合ann2.故数列{an}的通项公式为ann2(nN*).

例3.数列{an}中, a11,ann(nN*且n2),求此数列的通项公式.an1n1解: anna2a3a4an(nN*且n2)且a11, 2,2,2,,n.an1n1a13a14a15an1n1把这n-1个式子两边分别相乘可得

2an234n2,而n1也适合.,.即ann1a1345n1n1故{an}的通项公式为an2.n12.题型二:等差数列的证明与计算.例4.设Sn 为数列{an}的前n项和,已知S1 =1,且Sn1Sn2SnSn1(n2), (1)求证{1}是等差数列; Sn(2)求数列{an}的通项公式.(1)证明: n2时,Sn1Sn2SnSn1, 112(x2), SnSn1{11}是以1为首项,以2为公差的等差数列.SnS1(2)解:11, 1(n1)22n1, Sn2n1SnanSnSn1112(n2), 2n12n3(2n1)(2n3) (n1),1 2an. (n2)(2n1)(2n3)

五、课堂小结

从知识结构、数学思想、数学方法和题型变化等四个方面进行复习总结.

六、课外作业

1.阅读教材;

2. 作业:《学案》P41---P42面的双基训练。

思考题.设函数f(x)log2xlogx2(0x1).数列{an}满足f(2n)2n(nN).(1)求数列{an}的通项公式; (2)证明数列{an}为n的单调函数.解:(1) f(2n)2n得 aalog22anlog2an22n, 即an212n anan2nan10.annn21.

又0x1,02an120, an0.故{an}的通项公式annn21.

(2)证明:an1an

[n1(n1)21](nn21)1n21(n1)21 2n1111022(n1)1n1an1an.数列{an}为n的单调递增数列.

第17篇:高中数学难点解析教案13 数列的通项与求和

高中数学辅导网 http://www.daodoc.com

难点13 数列的通项与求和

数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项。通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.●难点磁场

(★★★★★)设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.(1)写出数列{an}的前3项.(2)求数列{an}的通项公式(写出推证过程)

a1a(3)令bn=(n1n)(n∈N*),求lim (b1+b2+b3+„+bn-n).2anan1n●案例探究

[例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

(1)求数列{an}和{bn}的通项公式;

(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有

cc1c1n=an+1成立,求b1b2cnnlimS2n1.S2n命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a

1、b

1、d、q,计算不准易出错;(2)问中对条件的正确认识和转化是关键.技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{dn},运用和与通项的关系求出dn,丝丝入扣.解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2, ∴a3-a1=d2-(d-2)2=2d,

∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,

b3(q2)22∴=q,由q∈R,且q≠1,得q=-2, b1q2∴bn=b·qn1=4·(-2)n1 -

-(2)令cn=dn,则d1+d2+„+dn=an+1,(n∈N*), bn京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com ∴dn=an+1-an=2, ∴cn8-=2,即cn=2·bn=8·(-2)n1;∴Sn=[1-(-2)n].bn3∴S2n11(2)S2n1(2)2n2n11()2n2S2,lim2n12

1nS2n()2n12[例2]设An为数列{an}的前n项和,An=

3 (an-1),数列{bn}的通项公式为bn=4n+3; 2(1)求数列{an}的通项公式;

(2)把数列{an}与{bn}的公共项按从小到大的顺序排成一个新的数列,证明:数列{dn}的通项公式为dn=32n+1; (3)设数列{dn}的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和;Dn为数列{dn}的前n项和,Tn=Br-Dn,求lim

n

Tn.(an)4命题意图:本题考查数列的通项公式及前n项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力.知识依托:利用项与和的关系求an是本题的先决;(2)问中探寻{an}与{bn}的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点.错解分析:待证通项dn=32n+1与an的共同点易被忽视而寸步难行;注意不到r与n的关系,使Tn中既含有n,又含有r,会使所求的极限模糊不清.技巧与方法:(1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n与r的关系,正确表示Br,问题便可迎刃而解.解:(1)由An=∴an+1-an=33(an-1),可知An+1=(an+1-1), 22a33 (an+1-an),即n1=3,而a1=A1= (a1-1),得a1=3,所以数列是以

3an22为首项,公比为3的等比数列,数列{an}的通项公式an=3n.

2n12nn1(2)∵32n+1=3·32n=3·(4-1)2n=3·[42n+C1(-1)+„+C22n·4·(-1)+(-1)]2n·

4-=4n+3,

n1∴32n+1∈{bn}.而数32n=(4-1)2n=42n+C142n1·(-1)+„+C24·(-1)+(-1)2n=(4k+1), 2n·2n·

-∴32n{bn},而数列{an}={a2n+1}∪{a2n},∴dn=32n+1.

32n13(3)由3=4·r+3,可知r=,

4r(74r3)32n1332n172727nr(2r5),Dn(19n)(91), ∴Br=2421982n+

1京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com 92n1432n12127nTnBrDn(91)889113 34n32n,(an)434n,884T9limn4n(an)8●锦囊妙计

1.数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同.因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性.

S1,n12.数列{an}前n 项和Sn与通项an的关系式:an=

SS,n2n1n3.求通项常用方法

①作新数列法.作等差数列与等比数列.②累差叠加法.最基本形式是:an=(an-an-1+(an-1+an-2)+„+(a2-a1)+a1.③归纳、猜想法.4.数列前n项和常用求法 ①重要公式

1n(n+1) 2112+22+„+n2=n(n+1)(2n+1) 6113+23+„+n3=(1+2+„+n)2=n2(n+1)2

41+2+„+n=②等差数列中Sm+n=Sm+Sn+mnd,等比数列中Sm+n=Sn+qnSm=Sm+qmSn.③裂项求和:将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加时抵消中间的许多项.应掌握以下常见的裂项:

1111,nn!(n1)!n!,ctgαctg2α,n(n1)nn1sin2

1111r1rCnCnCn,等n(n1)!n!(n1)!④错项相消法 ⑤并项求和法

数列通项与和的方法多种多样,要视具体情形选用合适方法.●歼灭难点训练

一、填空题

1.(★★★★★)设zn=(则limSn=_________.n

1in

),(n∈N*),记Sn=|z2-z1|+|z3-z2|+„+|zn+1-zn|,22.(★★★★★)作边长为a的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________.

京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com

二、解答题

3.(★★★★)数列{an}满足a1=2,对于任意的n∈N*都有an>0,且(n+1)an2+an·an+1-

-nan+12=0,又知数列{bn}的通项为bn=2n1+1.(1)求数列{an}的通项an及它的前n项和Sn; (2)求数列{bn}的前n项和Tn;

(3)猜想Sn与Tn的大小关系,并说明理由.4.(★★★★)数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*).(1)求数列{an}的通项公式;

(2)设Sn=|a1|+|a2|+„+|an|,求Sn; (3)设bn=1(n∈N*),Tn=b1+b2+„„+bn(n∈N*),是否存在最大的整数m,使得对n(12an)任意n∈N*均有Tn>m成立?若存在,求出m的值;若不存在,说明理由.325.(★★★★★)设数列{an}的前n项和为Sn,且Sn=(m+1)-man.对任意正整数n都成立,其中m为常数,且m<-1.(1)求证:{an}是等比数列;

(2)设数列{an}的公比q=f(m),数列{bn}满足:b1=

1a1,bn=f(bn-1)(n≥2,n∈N*).试问当m3为何值时,lim(bnlgan)lim3(b1b2b2b3bn1bn)成立?

nn6.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+„+b10=145.(1)求数列{bn}的通项bn; (2)设数列{an}的通项an=loga(1+

1)(其中a>0且a≠1),记Sn是数列{an}的前n项和,bn试比较Sn与1logabn+1的大小,并证明你的结论.37.(★★★★★)设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4„).(1)求证:数列{an}是等比数列;

(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(通项bn;

(3)求和:b1b2-b2b3+b3b4-„+b2n-1b2n-b2nb2n+1.

参考答案

难点磁场

1bn1)(n=2,3,4„),求数列{bn}的

a122S1,S1=a1, 2a2a2∴12a1,解得a1=2.当n=2时,有22S2,S2=a1+a2,将a1=2代入,22a2整理得(a2-2)2=16,由a2>0,解得a2=6.当n=3时,有3S3=a1+a2+a3,将a1=2,2S3,

2解析:(1)由题意,当n=1时,有

京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{an}.有通项公式an=4n-2.下面用数学归纳法证明{an}的通项公式是an=4n-2,(n∈N*).①当n=1时,因为4×1-2=2,,又在(1)中已求出a1=2,所以上述结论成立.②假设当n=k时,结论成立,即有ak=4k-2,由题意,有2.代入上式,解得2k=2Sk,得Sk=2k2,由题意,有Sk=2k2代入得(

ak22Sk,将ak=4k-2ak122Sk1,Sk+1=Sk+ak+1,将2ak122)=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得2ak+1=2+4k,所以ak+1=2+4k=4(k+1)-2,即当n=k+1时,上述结论成立.根据①②,上述结论对所有的自然数n∈N*成立.解法二:由题意知an211(n∈N*).整理得,Sn=(an+2)2,由此得Sn+1=(an+1+2)2,2Sn,

288∴an+1=Sn+1-Sn=[(an+1+2)2-(an+2)2].整理得(an+1+an)(an+1-an-4)=0,由题意知an+1+an≠0,∴an+1-an=4,即数列{an}为等差数列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),即通项公式为an=4n-2.解法三:由已知得18an2a22Sn,(n∈N*)①,所以有n12Sn1②,由②式得22Sn1Sn22Sn1,整理得Sn+1-22·Sn1+2-Sn=0,解得Sn12Sn,由2于数列{an}为正项数列,而S12,Sn1Sn2,因而Sn12Sn,即{Sn}是以S12为首项,以

2为公差的等差数列.所以

Sn=

2+(n-1)

2=2n,Sn=2n2,

2,(n1)故an=即an=4n-2(n∈N*).SnSn14n2,(n2)a1a(3)令cn=bn-1,则cn=(n1n2)

2anan112n12n111[(1)(1)],22n12n12n12n1b1b2bnnc1c2cn 111111(1)()()1,3352n12n12n11lim(b1b2bnn)lim(1)1.nn2n1歼灭难点训练

一、1.解析:设cn|zn1zn||(1in11in2)()|()n1, 222京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com

122[1()n]1()n22 Snc1c2cn222212limSnn1222 22221 22答案:1+2.解析:由题意所有正三角形的边长构成等比数列{an},可得an=

a2n1,正三角形的内切圆构成等比数列{rn},可得rn=

31a,

62n133

2 a, 2∴这些圆的周长之和c=lim2π(r1+r2+„+rn)=

n

2a

n933答案:周长之和πa,面积之和a2

29面积之和S=limπ(n2+r22+„+rn2)=

二、3.解:(1)可解得

an1n,从而an=2n,有Sn=n2+n, ann1(2)Tn=2n+n-1.(3)Tn-Sn=2n-n2-1,验证可知,n=1时,T1=S1,n=2时T2<S2;n=3时,T3<S3;n=4时,T4<S4;n=5时,T5>S5;n=6时T6>S6.猜想当n≥5时,Tn>Sn,即2n>n2+1 可用数学归纳法证明(略).4.解:(1)由an+2=2an+1-anan+2-an+1=an+1-an可知{an}成等差数列,

d=a4a1=-2,∴an=10-2n.41(2)由an=10-2n≥0可得n≤5,当n≤5时,Sn=-n2+9n,当n>5时,Sn=n2-9n+40,21n5n9n 故Sn=

2n5n9n40 (3)bn=11111()

n(12an)n(2n2)2nn1111111nmTnb1b2bn[(1)()()];要使Tn>

2223nn12(n1)32总成立,需1m<T1=成立,即m<8且m∈Z,故适合条件的m的最大值为7.4325.解:(1)由已知Sn+1=(m+1)-man+1①,Sn=(m+1)-man②,由①-②,得an+1=man-man+1,即(m+1)an+1=man对任意正整数n都成立.∵m为常数,且m<-1

京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com ∴an1am,即{n}为等比数列.anm1an1(2)当n=1时,a1=m+1-ma1,∴a1=1,从而b1=由(1)知q=f(m)=

1.3bm,∴bn=f(bn-1)=n1 (n∈N*,且n≥2)

bn11m1∴11111111,∴{}为等差数列.∴=3+(n-1)=n+2, ,即bnbn1bnbn1bnbnbn1(n∈N*).n2mn1n1mman(),lim(bnlgan)lim[lg]lg,nnn2m1m1m1111111而lim3(b1b2b2b3bn1bn)lim3()1 nn3445n1n2mm10由题意知lg1,10,mm1m19b116.解:(1)设数列{bn}的公差为d,由题意得:解得b1=1,d=3, 10(101)10b1d1452∴bn=3n-2.(2)由bn=3n-2,知Sn=loga(1+1)+loga(1+=loga[(1+1)(1+

11)+„+loga(1+) 43n2111)„(1+)],logabn+1=loga33n1.43n23111因此要比较Sn与logabn+1的大小,可先比较(1+1)(1+)„(1+)与33n1的大343n2小,

取n=1时,有(1+1)>3311

1)>3321„ 411 由此推测(1+1)(1+)„(1+)>33n1

43n2取n=2时,有(1+1)(1+若①式成立,则由对数函数性质可判定:

1logabn+1,

31当0<a<1时,Sn<logabn+1,

3当a>1时,Sn>下面用数学归纳法证明①式.(ⅰ)当n=1时,已验证①式成立.

② ③

京翰教育http://www.daodoc.com/

高中数学辅导网 http://www.daodoc.com (ⅱ)假设当n=k时(k≥1),①式成立,即:

11(11)(1)(1)33k1.那么当n=k+1时,

43k2311113k13(11)(1)(1)(1)3k1(1)(3k2).43k23(k1)23k13k13k1(3k2)2(3k4)(3k1)2233[(3k2)][3k4]3k1(3k1)2339k43k10,(3k2)33k433(k1)123k1(3k1)111因而(11)(1)(1)(1)33(k1)143k23k1

这就是说①式当n=k+1时也成立.由(ⅰ)(ⅱ)可知①式对任何正整数n都成立.由此证得: 当a>1时,Sn>11logabn+1;当0<a<1时,Sn<logabn+1.337.解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.∴a2=2t3a22t3,.3ta13t

① ② 又3tSn-(2t+3)Sn-1=3t,

3tSn-1-(2t+3)Sn-2=3t

①-②得3tan-(2t+3)an-1=0.∴an2t32t3,n=2,3,4„,所以{an}是一个首项为1公比为的等比数列; an13t3t122t321=,得bn=f()=+bn-1.

bn133t3t(2)由f(t)= 可见{bn}是一个首项为1,公差为于是bn=1+

2的等差数列.322n1(n-1)=; 33542n1(3)由bn=,可知{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列,于

3334n1是b2n=, 3∴b1b2-b2b3+b3b4-b4b5+„+b2n-1b2n-b2nb2n+1 =b2(b1-b3)+b4(b3-b5)+„+b2n(b2n-1-b2n+1) =-

京翰教育http://www.daodoc.com/ 44154n14 (b2+b4+„+b2n)=-·n(+)=- (2n2+3n) 332393高中数学辅导网 http://www.daodoc.com

京翰教育http://www.daodoc.com/

第18篇:存瑞中学高中数学《数列求和》教学案

河北省存瑞中学2013-2014学年高中数学《数列求和》精品教学

案 北师大版必修1

两项之和(或等于首末两项“系数” 之和), 那么就可以把正着写的和与倒着写的和的两个和式相加,从而可求出数列的前n项和。 例1 已知函数f(x)1123af(),af(),af(),„,数列中,a123n4x2nnnkn1nakf(),„,an1f(),anf(),求数列{an}的前n项和Sn

nnn

nn1n22n练习1:已知lgxlgya且Snlgxlgxylgxylgy.求Sn



(六)、裂项相消法求和:这是分解与组合思想在数列求和中的具体应用。裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 例2 求数列{1}的前n项和Snn1n练习2:求和:

111(n2) 2222131n1

(七)、通项分析法:通过对数列的通项进行分析、整理,从中发现数列求和的方法,这也是求数列前n项和的一种基本方法.

3、已知数列{an}中,

a11,a2121,a3122221,a41222232221,.

求数列{an}的前n项和Sn.

作业:已知数列{an}的前n项和Sn满足:SnSnn2n0, 求数列

1的前n项和Tn.

anan1

第19篇:高中数学数列教学合情推理能力的培养

高中数学数列教学合情推理能力的培养

禹州市褚河高级中学 杨峰烁

高中数学课程改革不论从理念,教材内容还是到实施处处彰显数学思维能力培养。在新课程实施过程中强调着重培养学生创新精神和实践能力,而合情推理能力的培养正是实现这一目标的重要方法。在教学实践中,通过创设问题情境,引导学生细心观察;变式训练,强化思维能力;特殊值代入,引导学生猜想;特别是强化合情推理的意识,提升思维水平,达到培养学生的创新精神和实践能力的目的。下面我就个人在数学教学中如何点燃学生的合情推理思维火花的点滴做法与大家共勉。

1.合情推理的含义

1.1什么是合情推理,合情推理是根据已有的事实和正确的结论(包括经验和实践的结果),以及个人的经验和直觉等推测某些结果的推理过程。这种推理的途径是从观察、实验入手,凭数学直觉,通过类比而产生联想、归纳而提出猜想。高中阶段合情推理主常用的思维方法:归纳推理、类比推理。新课标中指出:“让学生结合已学过的数学实例和生活中的实例,了解合情推理的含义、步骤和方法,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。”在问题解决中,合情推理具有猜想和发现结论、探索和提供思路的作用,有利于创新意识培养。

1.2合情推理与演绎推理的关系。演绎推理是根据已有

的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程。根据数学建构主义认为:知识并非是主体对客体的被动的镜面式的反映,而是一个主动的建构过程。学习者通过不断对各种信息进行加工、转换,形成假设,所以合情推理是数学建构主体思维的关键步骤,也是必不可少的思维方法,它可以促进知识的深化,加速知识的迁移,能力的提升。合情推理是演绎推理的前奏,演绎推理是合情推理的升华,作为数学逻辑思维的重要组成部分,在教学过程中要特别重视如何采用适当的途径强化合情推理的意识,培养学生的合情推理的能力。

2.合情推理的步骤

1、审题(观察具体问题)

2、联想:(可以向自己提出一系列问题:见过与其类似的问题吗?比如图形类似?条件类似?结论类似?注:这些表面上很普通、很平常的问题能帮助我们联想,可能使我们找到打开问题的大门钥匙。

3、通过自身探究或合作交流(如:将问题特殊化,寻找类似结论或类似方法——归纳、类比猜想。

4、得到问题结论并加以证明。

3.培养合情推理能力的关键点:

3.1教学中要不断增强学生合情推理意识。新课程标准下的各种版本教材都将合情推理纳入具体的教学内容中,要求学生了解合情推理含义,结合典型案例,体会并认识合情

推理在数学发现中的作用来激发探究意识和创新精神。特别在高中复习阶段利用合情推理将有效培养学生解题能力和构建完整的高中数学体系。

3.2教学中防止学生易犯的错误:想当然的用合情推理来替代演绎推理。学生在平时解决问题时首先要确定一个目标,然后通过分析和合情推理,总结出一个预期的解决方案或猜想,最后还需对此猜想做出严格的证明。

4.培养学生合情推理能力的可行性途径

4.1创设问题情境,培养学生的观察能力,激发合情推理意识。著名数学教育家波利亚曾指出:“只要数学的学习过程稍能反映出数学的发明过程的话,就应当让猜测、合情推理占有适当的位置。”因此在教学中要从知识发生的过程设计合情推理的问题情境,留给学生足够的推理与猜想的时间,让学生通过合作交流或独立探究自主发现规律,从而获取新知,充分展示学生的思维过程,有利于学生理性思维的提高。问题是数学的心脏,创设的问题情境要适合学生的认知水平,让学生在具体问题的探索过程中热情参与,积极思考,大胆发言,在解答问题的过程中品尝成功的喜悦,激发合情推理的意识。

4.2特殊化引领,带动合情推理。合情推理中的归纳推理,指的是由某类事物的部分对象所具有的某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事

实概括出一般性的推理,即由部分到整体,由个别到一般的推理。在探寻求解某些问题的过程中,特殊情况代入可起到引领的作用。

数列中的合情推理 例

1 对于等差数 列{an } 有如下命题:“若{an } 是 等差数列, a =0 , s ,t是互不相等的正整数,则 (s .1)at .(t .1)(1) as = 0”.类比此命题,给出等比数列 {bn } 相应的一个正确命题. 评析本题以数列为载体,通过类比推理,考查 推理论证能力,由于类比等差数列的相关公式和性 质可以推导等比数列的相关公式和性质,等差数列 中的加减法、乘除法可以分别类比等比数列中的乘 除法、乘方开方运算.由等差数列中有 a1 =0 ,类比 得等比数列中 b =1 ,因此可得 b11tstsb..=. 例 2设无穷(1) 等差数列{}的前 n项和为 anSn .

(Ⅰ)若首项 a1 =23 ,公差 d = 1,求满足 S 2 = ()Sk 2k 的正整数k;

(Ⅱ)求所有的无穷等差数列{an},使得对于一切 =Sk 成立.正整数 k都有 S ()2 2

评析作为特殊的函数,数列中的很多性质可以 类比函数得到,特殊化的思想方法在数列解题中经 常用到,本题的解答也可以从一般情况展开,但计 算量比较大、计算技巧比较强,运用合情推理(特 殊到一般)的手段来解决更简洁,取 k =1 ,可得 a1 =0 或 a1 =1;取 k =2 时,若 a1 =0 ,可得 d =0 或 d =6 ,从而 an=0 或 an= 6(n .1) (不合,舍去,不 满足S = (S3)2 ).若

a1 =1,可得 d = 0或 d = 2,从而 an= 1, 2、3 或 an= 2n .1,经检验 an= 0、an=1 或 an= 2n .1 满足题意. 4.3数形结合,有助于养成合情推理的习惯。数形转化就是通过数与形的相互转化来解决数学问题,数形结合兼有数的严谨与形的直观,利用数形转化可使复杂问题简单话、抽象问题直观化,通过数形相互转换,得到解决问题的方法。“它山之石可以攻玉” ,用直观几何求解代数问题可以激活学生思维、产生直觉判断,从而引导学生主动联想,大胆假设推理,形成合情推理的能力,养成合情推理的习惯。

4.4由此及彼,求同存异,类比联想,培养合情推理能力。合情推理中的类比推理.指的是在两类不同事物之间进行对比 ,找出若干相同或相似点之后,推测在其它方面也可以存在相同或相似之处的一种推理模式。

类比推理具有以下三个特点:(1)类比是从人们已经掌

握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果.(2)类比是从一种事物的特殊属性推测另一种事物的特殊属性.(3)类比的结果是猜测性的,不一定可靠,但它却有发现的功能.在历史发展历程中,人类不断发现自然、征服自然,发明创造了不少有利于人类生存的工具:如①.工匠鲁班类比带齿的草叶,发明了锯。②.仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇,„„

在教学过程中,我们也可以利用类比推理学习新的知识:例如,数列中等差数列性质类比到等比数列性质;函数中指数性质类比到对数性质等。通过对相关性质进行类比,学生在学习过程中融会贯通,便可收到事半功倍的效果。既要引导学生学会细心观察、大胆猜测,做出合情推理,又要引导学生能够逐步学会严格证明,强化演绎推理能力。让学生的思维能够向深度、广度拓展,掌握猜测数学规律的方法,养成“观察——归纳(类比)——猜想——论证”的思维习惯,提高数学素养。

第20篇:高中数学数列教学设计中的实践探讨

高中数学数列教学设计中的实践探讨_中等教育论文_教育学论文_

引言 在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用,同时,数列的教学也是培养观察、分析、归纳、猜想、逻辑推理以及运用数学知识提出问题、分析问题和解决问题的必不可少的重要途径。因而,研究数列的教学设计可以洞察高中数学教学设计的一般规律,进而在高中数学教学研究的理论与实践之间架起一座更为坚实的桥梁。

1.新理念下数列教学设计的内容

按通常的观念,教学设计是指运用系统方法,将学习理论与教学理论的原理转换成对教学资料和教学活动的具体计划的系统化过程。教学设计主要解决了“教什么”、“如何教”、“教的如何”的问题,即教学设计是以设计解决教学问题的方法和步骤,形成教学方案,并对方案实施后的教学效果做出价值判断的规划过程和操作程序,其目的是优化教学过程,提高教学效果,创造更加合理高效的教学。

1.1 知识结构

数列这一章应主要包括一般的数列、等差数列、等比数列以及数列的应用四部分,重点是等差数列以及等比数列这两部分。数列这一部分主要是数列的概念、特点、分类以及数列的通项公式;等差数列和等比数列这两部分内容主要介绍了两类特殊数列的概念、性质、通项公式以及数列的前 n 项和公式;数列的应用除了渗透在等差与等比数列内宾的堆放物品总数的计算以及产品规格设计的某些问题外,重点是新理念下研究性学习专题,即数列在分期付款中的应用以及储蓄问题。

1.2 数学概念

数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。数列、等差数列、等比数列、通项公式等都属于数学概念,而且都属于陈述性概念,在设计这些概念的教学时,教师要注意向同学表明这些定义所揭露的概念的特点、本质,因为这些概念既是后续学习相应公式以及性质的基础,更是同学们准确解题的依据。

1.3 数学公式

公式在一定的范围内具有普遍适用性,因而也具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。在数列这一章主要涉及到等差数列的通项公式,等差数列前 n 项和公式及其变形公式,等比数列通项公式,等比数列前 n 项和公式及其变形公式。要使同学能牢固记住并熟练应用这些公式就必须让他们懂得公式的来龙去脉,掌握其推导思想及过程。在这一章有很多的变形公式,因此,教师要明确告诉学生哪个公式适用于哪种情形,以使解题变得简便易行。

1.4 数学方法

数列这一章蕴含着多种数学思想及方法,如函数思想、方程思想,而且在基本概念、公式的教学本身也包含着丰富的数学方法,掌握这些思想方法不仅可以增进对数列概念、公式的理解,而且运用数学思想方法解决问题的过程,往往能诱发知识的迁移,使学生产生举一反

三、融会贯通的解决多数列问题。在这一章主要用到了以下几中数学方法:

(1)不完全归纳法 不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。

(2)倒叙相加法 等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒叙相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。

(3)错位相减法 错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前 n 项和公式的推导就用到了这种思想方法。

(4)函数的思想方法 数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。

(5)方程的思想方法 数列这一章涉及了多个关于首项、末项、项数、公差、公比、第 n 项和前 n 项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。

2.新理念下影响教师进行数列教学设计的因素分析

在数学知识体系内部,数列占据着非常重要的地位,而且在现实生活当中有着具大的应用价值,对学生能力的培养也起到了不可估量的作用,因此教师要重视数列的教学。那么,在新的理念下,如何进行数列的教学设计才能将知识更好地传给学生,才能对学生的发展有帮助,才可以称得上好的教学设计呢?哪些因素影响了教师进行数列的教学设计呢?为此笔者从一线优秀数学教师、高中学生以及教材编订者三个维度进行了调查、研究。

2.1 线优秀教师如何看待数列的教学设计

教师是教学的实施者,是教学设计的实践者,尤其是优秀的教师,他们积极了大量

的教学经验,因此有绝对充分的发言权,为此,我采访了几位特级和高级教师,现将他

们的观点对比分析如下:

(1)重视教学情境的设置以及教学案例的使用

他们一致认为要使学生学好数学,首先要培养学生的学习兴趣,而恰当的教学情境及教学案例的使用不但能更好的启发学生,激发学生的学习兴趣,而且有助于增强学生的应用意识。

(2)对数列及其相关概念的教学设计说法不一

有的教师觉得应该先举数列的实例,让学生自己体会数列特点,组织同学讨论,并启发学生发现知识,因为这对于培养学生的数学学习能力,激发和培养学生学习数学的兴趣,增强学生的应用意识,增强学生合作、探究的能力都非常有帮助。有的教师则持另一种态度,他们认为由于时间的原因,可能会减少把知识转化为能力的环节,而以教师讲解为主的教学设计则可以在有限的时间内传授给学生更多的知识,教学效果更好,而且对于学习能力、接受能力差的学生更适合这种风格的教学设计。

(3)对等差数列概念的教学,采用以学生为中心的教学设计风格更适合学生深刻理解知识

“等差数列”这个概念本身就很形象地描述了它的本质,因此教师应创设恰当的情境,让学生在这个情境中自觉领会和发现知识的形成过程,在感悟的过程中深刻体会其蕴含的数学思想和方法,理解知识的本质。在教学过程中应组织学生研究、讨论,培养学生的合作意识和能力,在合作中发现学习的乐趣,从而提高学生的学习兴趣,开发学生智力。

(4)对等差数列通项公式推导的教学设计说法不一

有的教师认为等差数列通项公式的推导思想非常重要,他不但有助于理解公式,而且在以后的解题中也会用到,但只要通过教师的讲解,加以适当的引导,学生便能掌握。而有的教师则持另一种观点,他们认为,等差数列通项公式的推导思想并不是很顺理成章,水到渠成的,单纯的讲解可能对有的学生来说很生涩,因此,有必要在这一教学环节设置适当的情境,启发与引导学生,这样才能达到更佳的教学效果。

(5)对等比数列的概念以及通项公式的教学,多种教学设计风格互不排斥

等比数列与等差数列虽然是两类不同的数列,但是它们在研究方法、性质上都有很多的共通之处。因此,等比数列的教学设计可以采用对比法,即在概念、性质、公式的教学过程当中对比着相应的等差数列的内容进行设计,这也符合心理学中顺应教学法。有了等差数列的教学设计基础,因此有的教师建议可采用类似等差数列相应知识的教学设计法,学生不但可以很容易接受等比数列的内容,还可以加深学生对等差数列的理解,但两种方法都各有自己的长处,教师可根据个人风格自己进行选择设计,当然如果将两种方法结合起来,针对不同的内容进行优化设计,可能会收到更好的效果。

(6)应该在教学设计过程中,适当地向学生介绍数学史的知识

数学史知识的引入不但能激发学生学习数学的兴趣,提高他们的数学文化底蕴,而且能让他们更加懂得有关知识的形成过程,比如实践应用的需要、知识本身发展的地需要等,从而提高学生的数学应用意识。

http:// 2.2 学生期望的数列的教学设计

教学设计的对象是学生,最终的着眼点是为了学生的发展,因此从学生的角度出发考虑教学设计变得尤其重要。

(1)对于等差数列的概念以及通项公式的教学设计,他们更希望教师能给自己更多的参与空间

比如对于等差数列概念的教学,他们更期望教师能先列举几个等差数列的例子,同学思考、讲解其特点,找出规律,从而总结出什么是等差数列。因为他们认为,高中生的他们已经初步具备了一定的数学思维,已经学会了用思考、分析、理解去解决问题这种求知的方式不仅能让他们体会知识的形成过程,能深刻的理解与记忆知识,而且能够提高他们分析问题、解决问题,以及战胜困难的能力。 (2)不同数学水平的学生,对等比数列教学设计的看法不同

对于学习中等偏上的学生,他们希望教师能够通过与等差数列相应知识来进行对比教学,这不但有助于他们深入的理解等差数列的性质特点,而且能够使他们深刻理解与掌握等比数列的知识;但对于成绩落后的学生来说,他们觉得这种对比教学设计法反而会让他们感觉更加迷惑,容易混淆知识点,因此他们更希望能采用类似等差数列相应知识的教学法进行设计。

(3)数学史知识的引入颇受学生欢迎

数学史知识的适当引入不但能活跃课堂气氛,调动大家学习的积极性,激发学生学习数学的兴趣,使枯燥的数学变得更加生动有趣,而且有助于他们更好的接纳新知识因此 89.5%的学生都希望能在课堂上听到教师讲述有关的数学史知识。

2.3 教材编订者对数列教学设计的关注点

教材编订者是对教材理念、教材设计思想的最权威把握,而教师要进行教学设计首先要把握教材,要把握教材就要懂得教材的理念,因此教材编订者的意见就显得尤为重要。

(1)注重数学的基础知识教学

知识是数学学科的基础与灵魂所在,因此“总的要求是使学生在正确理解数列这一概念的基础上,掌握等差数列、等比数列的通项公式与求和公式,能够熟练地解决有关问题”。那么在讲解等差数列的性质时,教师要将等差数列的六条性质全部向学生交待清楚,并要求他们牢固掌握。

(2)注重对学生的启发教育

任何事物的产生都是有一定缘由的,数学知识也不例外,因此在教学过程中,应该尽可能向学生再现知识的发生过程。比如说等差数列概念的教学,为了让学生明白什么是等差数列,为什么要将等差数列这样定义,教师就可以在教学过程中先列举几个等差数列的例子,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义。这样让学生参与的课堂将是生动的课堂,而且很恰当地帮学生建立了知识体系,并帮助他们进行知识的记忆。

(3)注重知识的应用

新教材中加入了等差与等比数列研究性学习这一部分内容,目的在于教会学生将知识学以致用,用理论指导实践,而且培养了他们的合作意识、研究精神,这也是新理念所倡导的。

3.对数列教学设计的实践分析

实践是最好的问题发源地,何种类型的教学设计更容易让学生接受,更易知识的传授,对学生的发展有帮助,要通过实践才能得以验证,为此我在长春市第二实验中学旁观了“数列”这一章的教学过程,给了我很大的启发。

3.1 不存在“万能”的教学设计 对数列这一章的教学设计,不存在完全以“教”为中心,或以“学”为中心的极端教学设计风格。两种风格的教学设计,并不是是我非你,是你则非我的完全对立关系,并不是一定要肯定一方,而否定另一方,采用哪种模式的教学设计,要针对不同的教学内容进行选择。比如等差数列前 n 项和公式的推导课,我认真听取了二实验两位新教师对这一节课不同的诠释方法,第一位教师是基于以教师的教为中心的风格,第二位教师是基于以学生的学为中心,二者收到的效果也大相径庭。第一位教师以讲解为主,又由于本身能力所限,不能对学生进行很好的启发、诱导,因此很难将同学们的思路引到正确的路线上来,以至于同学们表现得不够积极,而且公式的推导也因为同学们的无法配合而显得过于生硬、艰难;第二位教师则将公式推导与梯形面积公式的证明联系起来,创设了恰当的教学情境,使公式的推导显得简单而水道渠成,而且同学们表现得也非常积极,教学效果非常好。但是对于等比数列的概念的教学,两种风格的教学设计若经过教师认真的思考,斟酌,都会是一个好的教学设计。

3.2 教学设计要关注学生的需要

教学设计最终是为学生服务的,而学生原有认知水平,认知结构,以及接受能力都会因人而异,对于水平相对弱一些的学生,如果把课堂教给他们,让他们自己去探索、发现知识可能会有一些困难,因此,这于这样的学生更适合传统的讲授式教学,这不但能让他们在尽可短的时间内掌握最基本的知识,而且通过强化,能帮助他们对知识的记忆。市二实验的学生接受能力不能算最优秀的,因此他们的老师在习题课教学过程中,往往将简单易处理的问题留给学生讨论,而有一定难度的题,则由教师进行讲解,做到了以从学生需要出了,收到了良好的教学效果。

3.3 教学设计还要尊重教师的教学习惯

对于有教学经验的老教师,他们经过多年的摸索、尝试,反思,已经沉淀出自己对特定知识的固有想法,而且这是被实践证明了的有效的方法。比如对于等差数的概念教学,某位特级教师就采用了以教为中心的教学风格:根据前一节所学知识(数列的通项公式),为了恰当地复习和引入本节课,也就是从承上启下的角度,在上课开始给出这样的一个题目:

已知数列{an}的通项公式是:an = 3n-2

(1)求a1,a2,a3,a4;

(2)求a2-a1,a3-a2,a4-a3,并由这三个式的值,猜想对任意的正整数n,都有an+1-an 值是否为同一个常数?如果是给出证明;如果不是,说明理由。

让学生从这个具体的题目中,初步体会到等差数列的本质特征,即“等差”。在这个短小精悍的情境设置当中学生既巩固到了上节课所学的内容,更重要的是比较轻松地感悟到等差数列的本质。

总之,进行数列的教学设计,不存在永恒的教学设计模式,选择哪种教学设计风格,以什么样的形式呈现给学生,既要考虑到教学内容的特点,又要考虑到学生的因素,当然还与教师的教学风格有关,要综合多种因素,因情况而定,但好的教学设计就是既达到知识的传授,又能对学生的能力发展有一定的促进作用。

参考文献:

[1] 孔凡哲,王汉岭.高中数学新课程创新教学设计[M].长春:东北师范大学出版社,2005. [2] 杨开城,李文光.教学设计理论的新框架[J].北京:中国电化教育,2001

[3] 刘长华.新课程教学设计―数学[J].大连:辽宁师范大学出版社,2003

[4] 何克抗.建构主义―革新传统教学的理论基础[J].甘肃:电化育研究,1997

http://

高中数学数列教案模板
《高中数学数列教案模板.doc》
将本文的Word文档下载到电脑,方便编辑。
推荐度:
点击下载文档
相关专题
点击下载本文文档